GBBopen Reference Manual

Version 1.5

Dan Corkill
The GBBopen Project
http:/GBBopen.org

October 30, 2013
16:10 EDT

GBBopen

http://GBBopen.org

Copyright © 2003—2013 by Daniel D. Corkill for the GBBopen Project.

This manual may be reproduced and distributed in whole or in part, subject to the following
conditions:

e The copyright notice above and this permission notice must be preserved complete on all
complete or partial copies.

e Any translation or derivative work of this manual must be approved by the copyright holder in
writing before distribution.

e If you distribute this manual in part, instructions and a means for obtaining a complete version
of this manual must be included.

e Small portions may be reproduced as illustrations for reviews or quotes in other works without
this permission notice if proper citation is given.

e Distribution of this work or a derivative of this work in any standard (hard copy) book form is
prohibited without prior written permission from the copyright holder.

All source code examples in this work are placed under and covered by the GBBopen software license
that accompanies each GBBopen distribution and is also available at
http://GBBopen.org/svn/GBBopen/trunk/LICENSE.

This work is licensed and provided “as is” without warranty of any kind, express or implied,
including, but not limited to, the implied warranties of merchantability and fitness for a particular
purpose or a warranty of non-infringement. GBBopen software and the information in this manual
are subject to change without notice.

Please help improve this manual by reporting any errors, inaccuracies, bugs, misleading or confusing
statements, missing or unhelpful index entries, and typographical errors that you find. E-mail bug
reports, comments, and suggestions to bugs@GBBopen . org. Your help is greatly appreciated and will
be acknowledged.

GBBopen is a trademark of the GBBopen Project.
Any other brand or product names are trademarks or registered trademarks of their respective
holders.

The GBBopen Project
181 Pondview Drive
Ambherst, Massachusetts 01002

GBBopen(@GBBopen.org
http://GBBopen.org

This manual was produced using ITEX and PDFIATREX.

ii

http://GBBopen.org/svn/GBBopen/trunk/LICENSE
mailto:bugs@GBBopen.org
mailto:GBBopen@GBBopen.org
http://GBBopen.org
http://www.latex-project.org

Contents
Acknowledgments
Introduction

1 Starting Up

Top-level REPL commands

Compiling all GBBopen modules

Personal gbbopen-init.lisp file

Personal gbbopen-commands . 1lisp file

Personal gbbopen-modules directory
Installation-wide shared-gbbopen-modules directory
GBBopen Hyperdoc

Starting-up entities

[N BEN BEN I~ - I NI UURS VU R

*ignored-gbbopen-modules-directory-subdirectories®
gbbopen-modules-directory-verbose L.
*preferred-browser®
*sym-file-verbose® e
define-repl-command e
funcall-in-package e e
startup-module e
with-system-name e

2 Module Manager Facility
Key concepts
Stand-alone usage

Module Manager entities

*automatically-create-missing-directories™
*autorun-modules™ e
*patches-only™
compile-module L e
continue-patch e
define-module e
define-relative-directory
define-root-directory e
describe-module
describe-patches e
finish-patch e
get-directory e e
get-patch-description e
get-root-directory e
load-module e e
load-module-file
module-directories
module-loaded-p e
patch e e e
patch-loaded-p e e
show-defined-directories

iii

e g O o S gy ey
O OotTtwWwN =O©

o N
—-

start-patch 57

with-module-redefinitions, 59
3 GBBopen Tools 61
GBBopen Tools entities 61

:disable-compiler-macros e 62

dfull-safety e e 63

*disable-with-error-handling® 64

allow-redefinition e 65

ASSY - . o e 66

bounded-value e 67

CASE-USING e e e 68

case-using-failure e 70

CCASE-USINGt e e e e 71

compiler-macroexpand e 73

compiler-macroexpand-1 e 74

counted-delete 75

decf-after e 77

decf/delete-acons L e 78

delg e e e e 80

delg-one e e e 81

defem L e 82

define-class e 83

do-until 85

do-while e 86

dosequence e e e 87

dosublists e 88

dotted-length e 89

€CASE-USING e e e 90

ensure-finalized-class L 92

ensure-list 93

incf-after e e 94

list-length-1-p e 95

list-length-2-p e e 96

list-length> e 97

list-length>1 e 98

list-length>2 e 929

make-hash-values-vector 100

make-keyword e e 101

TEIQ . . . v v o v e 102

multiple-value-setf e 103

nsorted-insert e 104

object-address e e e 105

print-instance-slot-value 106

print-instance-slots e 107

Printvo e e e 108

push-acons e e e 110

pushnew-acons e 111

pushnew-elements 112

pushnew/incf-acons e 113

remove-properties e e 115

remove-property e e e e e e e e e e e e e e e 116

iv

3.1
3.2

3.3

3.4

set-equal e e e 117

sets-overlap-p e e 118
shuffle-list e 119
shrink-vector e 120
sole-element e e 121
splitting-butlast 122
sorted-maphash e 123
sortf . .. e e 124
stable-sortf e e 125
standard-gbbopen-instance 126
trimmed-substring 127
undefmethod e 128
unbound-value-indicator 129
until . . . e 130
while e e e 131
with-error-handling 132
with-full-optimization 135
with-generate-accessors-format 136
with-gensyms e e e 138
with-once-only-bindings 139
D0) 140
CLOS and MOP 141
Declared Numerics 143
Fixnum operators e e e e e e 144
Short-float operators e e e 145
Single-float operators e 146
Double-float operators e e 147
Long-float operators e 148
Pseudo Probabilities 149
0 e e e e e e e e e 150
[P0 . . o e e e e e e 151
EXPT0 . . o e e e e e e e e e e e e e e 153
In% e 154
PProb2prob e e e e 155
prob2pprob e e e e e 156
Date and Time 157
*month-precedes-date® 158
*time-first™ L . e e e 159
*year-first® L L e e e 160
brief-date e 161
brief-date-and-time 163
brief-duration e 165
brief-run-time-duration 167
encode-date-and-time 168
encode-time-of-day e 171
full-date-and-time e 172
http-date-and-time 176
internet-text-date-and-time L oL, 177
iso8601-date-and-time e 179
message-log-date-and-time L 180

parse-date e e e
parse-date-and-time e
parse-duration e e
parse-time e e e e
pretty-duration
pretty-run-time-duration e
very-brief-date e

3.5 Offset Universal Time

*ot-base™ e e
check-ot-base e e
ot2ut e e e
printvot e e e
set-ot-base e
ut20t e e e e e e e e

3.6 Transitioning Sets and Tables

add-to-eset e e e e
delete-from-eset
delete-et e e
get-et e e e e e e e
In-eset e e e e e
make-eset e e
make-et e e

3.7 Search Trees

IIrb-tree-count e e
lIrb-tree-delete e
Irb-tree-p e e
Irb-tree-test e e
IIrb-tree-value e e
make-llrb-tree e e
map-llrb-tree e

4 Additional GBBopen Tools
4.1 Portable Threads

all-threads e e
as-atomic-operation e
atomic-decf e e e
atomic-decf& e e
atomic-delete e e
atomic-flush e
atomic-incf e e
atomic-incf& e e
AtOMUIC-POP o e e e
atomic-push e
atomic-pushnew e
awaken-thread
condition-variable e
condition-variable-broadcast
condition-variable-signal
condition-variable-wait.
condition-variable-wait-with-timeout

vi

current-thread
hibernate-thread
kill-thread
make-condition-variable
make-lock
make-recursive-lock
nearly-forever-seconds
run-in-thread
sleep-nearly-forever
spawn-form
spawn-thread
symbol-value-in-thread
thread-alive-p
thread-name
thread-whostate
thread-yield
threadp
thread-holds-lock-p
with-lock-held
with-timeout
without-lock-held

4.2 Scheduled and Periodic Functions

periodic-function-verbose
schedule-function-verbose
all-scheduled-functions
kill-periodic-function
make-scheduled-function
pause-scheduled-function-scheduler
restart-scheduled-function-scheduler .
resume-scheduled-function-scheduler .
schedule-function
schedule-function-relative
scheduled-function-context
scheduled-function-invocation-time
scheduled-function-marker
scheduled-function-marker-test
scheduled-function-name
scheduled-function-name-test
scheduled-function-repeat-interval
scheduled-function-scheduler-paused-p
scheduled-function-scheduler-running-p
spawn-periodic-function
unschedule-function

4.3 Polling Functions

add-polling-function
describe-all-polling-functions
remove-polling-function
remove-all-polling-functions
run-polling-functions

4.4 Portable Sockets

accept-connection

vii

close-passive-socket e
local-hostname-and-port e
make-passive-socket e
open-connection e e e
remote-hostname-and-port
shutdown-socket-stream
start-connection-server e
with-open-connection e

4.5 Double Metaphone

double-metaphone e

4.6 OS Interface

browse-hyperdoc e
close-external-program-stream
kill-external-program
run-external-program e
SVI-VEISION e e e e e

5 GBBopen Core

skip-deleted-unit-instance-class-change
change-class e e
check-for-deleted-instance e
check-instance-locators e
class-instances-count
define-unit-class
delete-Iinstance e e e
deleted-instance-class
deleted-unit-instance e
describe-instance
describe-instance-slot-value
describe-unit-class e e
dimensions-of e e
direct-nonlink-slot-definition,
effective-nonlink-slot-definition
gbbopen-direct-slot-definition
gbbopen-effective-slot-definition
gbbopen-implementation-version
incomplete-instance-p e
initial-class-instance-number o
instance-deleted-p e
instance-dimension-value
instance-dimension-values
instance-name-of L e e
make-duplicate-instance e
make-duplicate-instance-changing-class.
make-instance L e e e
next-class-instance-number e
reset-unit-class e e
space-instances-of e e
standard-unit-class
standard-unit-instance
unduplicated-slot-names e

with-changing-dimension-values

5.1 Links

check-all-instance-links
check-link-definitions
direct-link-definition
effective-link-definition
link-instance-of
Linkf
link-setf
link-slot-p
standard-link-pointer
unlinkf
unlinkf-all

5.2 Events

add-event-function
define-event-class
describe-event-printing
disable-event-printing
enable-event-printing
evin-printv
remove-all-event-functions
remove-event-function
resume-event-printing
signal-event
standard-event-class
standard-event-instance
suspend-event-printing
with-events-disabled
with-events-enabled

5.3 Intervals

*coerce-contracted-interval-rationals-to-floats™

copy-interval
expand-interval
expand-point
infinite-interval
interval-end
interval-start
interval-values
make-interval
nexpand-interval
nshift-interval
shift-interval

5.4 Blackboard Repository

add-instance-to-space-instance
allowed-unit-classes-of
change-space-instance
children-of
clear-space-instances
confirm-if-blackboard-repository-not-empty-p .
define-space-class

1X

delete-blackboard-repository e
delete-all-space-instances e
delete-space-instance e
describe-blackboard-repository
describe-space-instance
describe-space-instance-storage
do-space-instances e e e
empty-blackboard-repository-p e
find-space-instance-by-path o o
find-space-instances e
make-space-instance e
map-space-instances e e
parent-of e e e e
remove-instance-from-space-instance
reset-gbbopen e
standard-space-class
standard-space-instance e
with-blackboard-repository-locked

5.5 Instance Retrieval

*find-verbose™ e
*use-marking™ L e e
*warn-about-unusual-requests®
do-instances-of-class. e
do-instances-on-space-instances
do-sorted-instances-of-class
filter-instances e
find-all-instances-by-name e
find-instance-by-name e
find-instances e e
find-instances-of-class e
make-instances-of-class-vector
map-instances-of-class e
map-instances-on-space-instances e
map-sorted-instances-of-class,
report-find-stats e
with-find-stats e
without-find-stats e

5.6 Saving and Sending

block-saved/sent-time e
block-saved/sent-value
*print-object-for-sending™® L
save/send-references-only
initialize-saved/sent-instance o o oL,
load-blackboard-repository
omitted-slots-for-saving/sending
print-object-for-saving/sending
print-slot-for-saving/sending,
save-blackboard-repository e
with-reading-saved/sent-objects-block
with-saving/sending-block o

5.7 Queue Management

clear-queue e e
do-queue e e e
first-queue-element e
insert-on-queue e e e e e e
last-queue-element e
make-queue e e
MAP-QUETE o o oottt e e e e e e e e e e e e e e e e
next-queue-element e
nth-queue-element e e
ON-QUEUE P . . . o v v v v et et e e e e e e e e e e e e e e e e e e
ordered-queue e e e e e
previous-queue-element
QUEUEC o i it e i e e e e
queue-element e e
queue-length e
remove-from-queue e e e e
show-queue e

6 GBBopen Extensions
6.1 Streaming

add-mirroring L e e e e e
add-to-broadcast-streamer e
clear-streamer-queue e
close-streamer e e
make-broadcast-streamer
open-streamer-p e e e e e e e e e e e e e
read-queued-streaming-block o o
remove-from-broadcast-streamer
stream-add-instance-to-space-instance
stream-delete-instance e
stream-instance e e e
stream-instances e e e
stream-instances-of-class e
stream-of e e e
stream-instances-on-space-instances
stream-link e
stream-nonlink-slot-update
stream-remove-instance-from-space-instance
stream-unlink
remove-mirroring e e e e e
with-mirroring-disabled,
with-mirroring-enabled
with-queued-streaming e
write-streamer-queue e e

6.2 dJournaling

load-journal e
make-journal-streamer e

6.3 Network Streaming

default-network-stream-server-port
define-streamer-node e
find-streamer-node e

X1

Kkill-network-stream-server
network-stream-server-running-p e
open-network-streamer e e
start-network-stream-server e

7 Agenda Control Shell

abort-ks-execution L
activation-cycle-of e
collect-trigger-instances e
control-shell-running-p
current-control-shell
define-Ks e e e
define-ks-class e
define-ksa-class e e
describe-Ks e e
ensure-Ks e e
executed-ksas-of
execution-cycle-of e
exit-control-shell e
find-ks-by-name e e e

ks

ks-enabled-p e e e
Kks-0f e e e
KRsa e e e e e
ksa-queue e e e e e e
obviated-ksas-of e
obviation-cycle-of e
ordered-ksa-queue e e
pending-ksas-of e e
rating e e e
rating-of L e e e e
restart-control-shell
sole-trigger-event-of e
sole-trigger-instance-of e
standard-ksa-class e
start-control-shell
trigger-events-of e e
undefine-ks e e

Glossary

Index

x11

Acknowledgments

Many people have contributed comments, suggestions, design ideas, questions (and answers), bug
reports, and code to GBBopen, and we appreciate their time and effort. Acknowledgment of some of
their contributions here does not necessarily imply that any individual or the organizations with
which they are affiliated endorse GBBopen or this documentation. Disclaimers aside, GBBopen users
thank each of you!

Douglas Crosher ported GBBopen to Scieneer CL. Gary King worked on the initial Digitool MCL and
OpenMCL porting efforts. Christian Lynbech performed the initial CMUCL port. Sam Steingold
initiated the CLISP port. Vladimir Tzankov provided Portable Threads support for CLISP/MT.

Questioners, bug reporters, capability demanders, contributors, and great idea suggesters include:
Pascal Costanza, Matthew Danish, Michael Hannemann, Susan Lander, Attila Lendvai, Wendall
Marvel, Clayton Morrison, Beryl Nelson, Eric O’Connor, Zack Rubinstein, Bill St. Clair, Earl Wagner,
Paul Werkowski, and Huzaifa Zafar.

Organizations Franz Inc. and LispWorks Ltd. provided (and continue to provide) Common Lisp
licenses and technical support to the Project.

Some early design work for GBBopen was supported by DARPA’s Information Exploitation Office
(IXO) under contract MDA-972-02-C-0028 to Information Extraction & Transport, Inc.

Other efforts using GBBopen that have indirectly led to contributed GBBopen improvements and
enhancements include: research supported by the “Fusion Based Knowledge for the Future Force”
ATO program and the “Advanced REsearch Solutions - Fused Intelligence with Speed and Trust”
program at the U.S. Army RDECOM CERDEC Intelligence and Information Warfare Directorate,
Fort Monmouth, NJ, under contract W15P7T-05-C-P621; research on “Command & Control and Data
Fusion Architectures” supported by DND Canada under contract W7701-4-2118; work on
“Knowledgable Dynamic-Process Modeling and Execution” supported by Boeing and Infosys
Technologies Limited; research on “A Multi-Agent Approach for Heterogeneous Persistent
Surveillance” supported by Raytheon Intelligence & Information Systems; work on “Massive-Scale
Representation and Reasoning” supported by GHX; and research supported by the AFRL “Advanced
Computing Architecture” program, under contract FA8750-05-1-0039.

Legacy Contributors GBBopen builds upon concepts and ideas that were explored and refined in
the UMass Generic Blackboard system and the commercial GBB product. The following people made
significant contributions to those systems:

UMass Generic GBB Product
Blackboard System Tony Carrico

Dan Corkill Dan Corkill

Kevin Gallagher Raymond de Lacaze
Philip Johnson Kevin Gallagher
Kelly Murray Susan Lander

Zack Rubinstein
Suzanne Tromara

The UMass Generic Blackboard Project received research support from The National Science
Foundation, the Defense Advanced Research Projects Agency, the Office of Naval Research, and Texas
Instruments, Inc.

xiii

http://www.scieneer.com/scl/
http://www.metabang.com/
http://www.digitool.com/
http://openmcl.clozure.com/
http://www.podval.org/~sds/
http://clisp.cons.org/
http://clisp.cons.org/
http://p-cos.net/
http://www.cs.arizona.edu/~clayton/
http://www.cs.cmu.edu/~zbr/
http://www.cs.umass.edu/~hzafar/
http://www.franz.com
http://www.lispworks.com
http://dtsn.darpa.mil/ixo/
http://www.iet.com/

Xiv

Introduction

GBBopen is a modern, high-performance, open source blackboard-system development environment
that is based on the concepts that were explored and refined in the UMass Generic Blackboard
system and the commercial GBB product. GBBopen is not, however, a clone or updated version of
either system. The GBBopen Project is applying the knowledge and experience gained with these
earlier tools to create a new generation of blackboard-system capabilities and make them freely
available to a wide audience.

GBBopen is structured for high-performance and scalability while maintaining flexibility and
adaptability to changes in representation, knowledge-source (KS) components, and control strategies.
Multi-dimensional abstraction of blackboard components (“space instances”), blackboard objects
(“unit instances”), and proximity-based retrieval patterns is used to provide a semantically
meaningful separation of blackboard-repository storage mechanisms from KS and control code. This
separation allows storage and search strategies and optimizations to change dynamically as well as to
be adapted to a broad range of application areas. GBBopen also provides highly efficient and
extensible event primitives that form the foundation for fast, yet effective, opportunistic control
reasoning.

At the implementation level, GBBopen is designed as a smooth extension of Common Lisp, providing
all the advantages of a rich, dynamic, reflective, and extensible programming language to the
blackboard-system architects and component writers. These capabilities are crucial in building
complex blackboard-based applications where object representations, knowledge sources (KSs), and
control mechanisms will change during development and over the operational lifetime of the
blackboard application. GBBopen is tightly integrated with CLOS (the Common Lisp Object System)
and provides additional blackboard-specific object mechanisms via the Metaobject Protocol.

The open-source licensing of GBBopen provides a number of important benefits:
e A modular, open-source reference implementation of blackboard-system infrastructure that
serves as a basis for research and development activities.

e The availability of source code and the right to modify it enables unlimited improvement and
enhancement of the software. It also makes it possible to port the code to new hardware and
software, to adapt it to changing conditions, and to reach a detailed understanding of how
GBBopen works. Source code availability also makes it much easier to isolate and fix bugs.

e The right to redistribute improvements and extensions to the GBBopen source code.
e The right to use the software.

e There is no single entity on which the future of the GBBopen software depends. This is
particularly important given the highly specialized nature of blackboard-system software and
the lack of multiple implementations.

e GBBopen supports alternative and additional GBBopen modules for use in research and
experimentation.

GBBopen 1.5 Reference

http://dancorkill.home.comcast.net/pubs/aaai87.pdf
http://dancorkill.home.comcast.net/pubs/aaai87.pdf
http://www.lispworks.com/documentation/HyperSpec/Front/index.htm
http://www.lisp.org/mop/index.html

1 Starting Up

GBBopen is packaged with its own module system (see page 21) that supports compiling and loading
GBBopen components. The Module Manager Facility is designed for ease of use and for simplicity in
porting to Common Lisp implementations. For example, to compile all GBBopen modules, you only
need to evaluate the following forms within your Common Lisp environment. First load GBBopen’s
<install-directory>/initiate.lisp file:

cl-user> (load "<install-dir>/initiate.lisp")
;; Loading <install-dir>/initiate.lisp
;7 GBBopen is installed in <install-dir>

;7 Your "home" directory is <homedir>

¥ Loading <install-dir>/extended-repl.lisp
H Loading <install-dir>/commands.lisp
B Loading <install-dir>/gbbopen-modules—-directory.lisp

;7 No shared module command definitions were found in <install-dir>/gbbopen-modules/.
;7 No personal module command definitions were found in <homedir>/gbbopen-modules/.
#P"<install-dir>/initiate.lisp"

cl-user>

Notice that some additional GBBopen initialization files have been loaded by this file as well as
GBBopen’s top level read-eval-print loop (REPL) command definitions.

Windows users

If you are running GBBopen on Windows, note that backslash is the escape character in the
standard Common Lisp reader; it causes the next character to treated as a normal
character rather than as having any special syntactic characteristics. So, each backslash in
a file-name string must be entered as two backslash characters. For example:

> (load "c:\\GBBopen\\initiate.lisp")

Many Common Lisp implementations also support Unix-style regular slashes in Windows
file names (e.g., "c:/GBBopen/initiate.lisp"), which can be particularly convenient
when typing file names in the REPL.

Top-level REPL commands

The files loaded by <install-directory>/initiate.lisp add some handy REPL

keyword commands when running Allegro CL, Clozure CL, CMUCL, ECL, LispWorks, SBCL, and
Scieneer CL users. Some interaction interfaces, such as SLIME, use their own REPL rather than the
top-level listener provided by the Common Lisp implementation and, therefore, may not support
keyword REPL command processing. GBBopen provides a Swank extension to the SLIME REPL that
supports REPL keyword commands.

Built-in and GBBopen REPL commands are defined in the file
<install-directory>/commands.lisp. REPL commands, including those that have arguments,
are specified using a non-list (“spread”) representation. For example:

> :gbbopen-test :propagate :create-dirs

GBBopen 1.5 Reference
1 Starting Up 3

http://franz.com/products/allegrocl/
http://trac.clozure.com/ccl
http://www.cons.org/cmucl/
http://common-lisp.net/project/ecl/
http://www.lispworks.com
http://sbcl.sourceforge.net
http://www.scieneer.com/scl/
http://common-lisp.net/project/slime/
http://common-lisp.net/project/slime/

Some Common Lisp implementations (Clozure CL, LispWorks, and SBCL) and the SLIME REPL
interface, also support REPL commands in non-spread (list) form in addition to the spread notation.
For example:

> (:gbbopen-test :propagate :create-dirs)

Equivalent functions in the : common-1isp-user package are always defined for each
REPL command, and these functions can be used in place of REPL keyword-command processing.

Compiling all GBBopen modules

Once <install-dir>/initiate.lisp, all GBBopen modules can be compiled by entering the
following REPL command:

cl-user> :compile—gbbopen

;; Loading <install-dir>/startup.lisp

;7 GBBopen is installed in <install-dir>

;7 Your "home" directory is <homedir>

;+ Loading <install-dir>/source/module-manager/module-manager—loader.lisp

;; Loading <install-dir>/<platform-dir>/module-manager/module-manager.lisp

;i Loading <install-dir>/modules.lisp
;7 No shared module definitions were found in <install-dir>/gbbopen-modules/.

;i No personal module definitions were found in <homedir>/gbbopen-modules/.

;77 GBBopen modules compilation completed.

[Common Lisp will exit]

GBBopen should compile all GBBopen modules and then exit Common Lisp without error.

As can be seen from the file-loading messages, the startup.1isp file that is loaded by the
:compile—-gbbopen command loads a bootstrap loader file for the Module Manager Facility (see
page 21) (the file source/module-manager/module-manager—-loader.lisp). This bootstrap file
then loads the Module Manager files (source/module-manager/module-manager.lisp and
source/module-manager/module-manager—user. 1isp) followed by the module definitions for all
GBBopen modules (contained in the file source/modules. lisp). Then the Module Manager is used
to compile all GBBopen modules.

GBBopen 1.5 Reference
4 1 Starting Up

http://trac.clozure.com/ccl
http://www.lispworks.com
http://sbcl.sourceforge.net
http://common-lisp.net/project/slime/

ASDF, clbuild, and Quicklisp users

GBBopen’s Module Manager Facility provides an interface that allows ASDF (and therefore
clbuild and Quicklisp) to play nice with Module Manager. If you installed GBBopen using
clbuild or Quicklisp, ASDF has been informed of GBBopen’s
<install-dir>/gbbopen.asd system-definition file. Otherwise, to use ASDF to set up
GBBopen, you must add the gbbopen . asd file to ASDF’s Registry manually. Then, instead
of loading the <install-dir>/initiate.lisp file, the Module Manager and GBBopen
module definitions can be loaded using ASDF by entering:

cl-user> (asdf:operate ’"asdf:load-op :gbbbopen)

;; Loading <install-dir>/initiate.lisp

;7 GBBopen is installed in <install-dir>

;7 Your "home" directory is <homedir>

;; Loading <install-dir>/startup.lisp

;7 GBBopen is installed in <install-dir>

;7 Your "home" directory is <homedir>

;; Loading <install-dir>/source/module-manager/module-manager—-loader.lisp
;+ Loading <install-dir>/<platform-dir>/module-manager/module-manager.lisp

;; Loading <install-dir>/modules.lisp

;7 No shared module definitions were found in
<install-dir>/gbbopen-modules/.

;i No personal module definitions were found in <homedir>/gbbopen-modules/.

;7 Defining an ASDF defsystem for each Module Manager module...
cl-user>

or when ASDF is integrated with Common Lisp’s require:
cl-user> (require :gbbopen)
;; Loading <install-dir>/initiate.lisp
;7 GBBopen is installed in <install-dir>
;7 Your "home" directory is <homedir>

;; Loading <install-dir>/startup.lisp

;; GBBopen is installed in <install-dir>

;7 Your "home" directory is <homedir>

;; Loading <install-dir>/source/module-manager/module-manager-loader.lisp
;+ Loading <install-dir>/<platform-dir>/module-manager/module-manager.lisp

;i Loading <install-dir>/modules.lisp

;5 No shared module definitions were found in
<install-dir>/gbbopen-modules/.

;i No personal module definitions were found in <homedir>/gbbopen-modules/.

;; Defining an ASDF defsystem for each Module Manager module...
cl-user>

Notice that loading the <install-dir>/initiate.lisp file loaded only GBBopen’s
REPL command processing extensions, global REPL command definitions, and
module-directory processing into Common Lisp—the Module Manager is not loaded until it
is needed (such as when we performed the : gbbopen-user REPL command). The ASDF

: gbbopen “system” start up, on the other hand, must also load the Module Manager and
module definitions, as they are required in order to define an ASDF system for each Module
Manager module.

GBBopen 1.5 Reference
1 Starting Up

http://common-lisp.net/project/asdf/
http://common-lisp.net/project/clbuild/
http://quicklisp.org/beta/

Personal gbbopen-init.lisp file

If a gbbopen-init.1isp file (source or compiled) is present in the user’s “home” directory (as
defined by user-homedir-pathname), it is loaded by the <install-directory>/startup.lisp
file after the Module Manager Facility (see page 21) and definitions have been loaded. A personal
<homedir>/gbbopen—-init.lisp file is a handy mechanism for defining user-specific modules,
application modules, GBBopen parameters, and other personalizations.

Here is a simple example of a personal <homedir>/gbbopen-init.1lisp file that defines a root
directory named :my-app-root and the module :my-app:

;757 —*— Mode:Common-Lisp; Package:CL-USER —x-—
(in-package :cl-user)

(module-manager:define-root-directory :my-app-root
(make-pathname :directory "~/my-app"))

(module-manager:define-module :my-app
(:requires :gbbopen-user)
(:directory :my-app-root)

(:files "my-file"))

H End of File

For shared or more substantial application modules, we recommend a packaging convention that
mirrors that of GBBopen. This will be discussed shortly in conjunction with using a personal
gbbopen-modules directory (see page 7).

Personal gbbopen-commands . 1lisp file

You can create your own REPL commands by defining them in a personal gbbopen—-commands.lisp
file. If a gbbopen-commands file (source or compiled) is present in the user’s “homedir” home
directory (as defined by user-homedir-pathname), it is loaded automatically by GBBopen’s
initiate.lisp file. For example, the following personal gbbopen—-commands. 1isp file defines a
REPL command (named :my-app) and an equivalent function (c1-user: :my—app) for compiling and
loading the :my—-app module that was defined above:

;757 —*— Mode:Common-Lisp; Package:CL-USER —x-—
(in-package :cl-user)
(define-repl-command :my—-app (&rest options)

"Compile and load my GBBopen application module"
(startup-module :my-app options :gbbopen-user))

HH End of Fi

[
=
()

GBBopen 1.5 Reference
6 1 Starting Up

Personal gbbopen-modules directory

Although a personal gbbopen—-init .1lisp file can be used to define the module : my-app, GBBopen
provides an alternative mechanism that is even more convenient if you develop, share, or use a
number of modules or applications.

If a gbbopen—-modules directory is present in the user’s home directory (as defined by
user—homedir-pathname), it is expected to consist of directories each containing an individual
GBBopen application or library. Although these application directories can be placed directly in the
gbbopen-modules directory, it is generally more convenient to use a symbolic link (or a “pseudo
symbolic-link file” on Windows) to point to the actual application directory, where ever it is located.
For example, an application can be provided to a number of users by creating a symbolic link to the
actual application directory in each user’s gbbopen-modules directory.

Each application directory contains:

e amodules.lisp file that contains module definitions (loaded after the personal
gbbopen-init.1lisp file if there is one in the user’s “homedir”)

e a directory named source containing all the source files for the module or application

e an optional commands. 11isp file that specifies REPL commands for the module (loaded after the
personal gbbopen-commands . 1isp file if there is one in the user’s “homedir”)

e any additional directories or files useful to the application

We highly recommend following this packaging convention, which mirrors that of GBBopen itself. It
is very easy to create, use, and share modules defined in this way by placing symbolic links to the
module directories in your personal gbbopen-modules directory. Windows, unfortunately, is the
exception to this as Windows does not provide symbolic links. GBBopen users running on Windows
must create a text file with the file extension . sym (that contains the target directory path as its sole
line) as a stand-in for the symbolic link.

Installation-wide shared-gbbopen-modules directory

There is also an <install-directory>/shared-gbbopen-modules directory. As with a user’s
gbbopen-modules directory (discussed above), the shared—gbbopen-modules directory is assumed
to contain symbolic links (or “pseudo-symbolic-link” files on Windows) to individual GBBopen module
directory trees.

This is the recommended mechanism for installation-wide managing and sharing of modules and
applications.

GBBopen Hyperdoc

Convenient access to a local copy of the GBBopen Hyperdoc manual from Common Lisp is available
by using the browse-hyperdoc function; part of the : os—-interface (see page 317) module. The
browser used by browse-hyperdoc is specified by the value of xpreferred-browserx. A different
value can be specified in either your Common Lisp initialization file or, preferably, in your personal
gbbopen—-init.lisp file. Changing the default setting in GBBopen’s startup.lisp is not
recommended.

Emacs access to the GBBopen Hyperdoc is provided by
<install-directory>/browse—hyperdoc.el. This file defines the interactive Emacs command
browse—hyperdoc and binds it to META-?. To enable this command, load
<install-directory>/browse-hyperdoc.el from your .emacs initialization file.

If you already use the hyperspec.el utility (included with SLIME and ILISP distributions, but

GBBopen 1.5 Reference
1 Starting Up 7

http://www.gnu.org/software/emacs/emacs.html
http://cvs.sourceforge.net/viewcvs.py/ilisp/ILISP/extra/hyperspec.el?rev=1.5&view=auto
http://common-lisp.net/project/slime/
http://sourceforge.net/projects/ilisp/

usable on its own), the Emacs browse-hyperdoc command will automatically defer to the Common
Lisp HyperSpec when given a non-GBBopen entity. You can also download and install a local copy of
the Common Lisp HyperSpec for use without a network connection. In this case, set the value of
common-lisp-hyperspec—root in your .emacs initialization file to point to your local copy of the
HyperSpec. For example:

(setf common-lisp-hyperspec-root "file:/usr/local/CLHS/")

Highly recommended!

Starting-up entities

Descriptions of entities related to installing and customizing GBBopen follow.

GBBopen 1.5 Reference
8 1 Starting Up

http://www.lispworks.com/documentation/HyperSpec/
http://www.lispworks.com/documentation/HyperSpec/

ignored-gbbopen-modules-directory-subdirectories [Variable]

Purpose
Specify subdirectory names to be ignored by GBBopen’s gbbopen-modules directory processing.

Package :common-lisp-user

Module Defined in gbbopen-modules-directory.lisp
Value type Alist

Initial value (" .svn")

Description

Subdirectories named in xignored-gbbopen-modules—directory-subdirectories~ are
ignored when processing shared and personal gbbopen-modules directories for command and
module definitions.

Example
Add "cvs" to the list of subdirectories that are ignored by GBBopen’s gbbopen-modules directory
processing:

> (push "CVS" xignored-gbbopen-modules-directory-subdirectoriesx)

("cvs" ".svn")
>

GBBopen 1.5 Reference
1 Starting Up 9

gbbopen-modules-directory-verbose [Variable]

Purpose

Controls whether the processing of individual modules is shown during gbbopen-modules directory
processing.

Package :common-lisp-user
Module Defined in gbbopen-modules-directory.lisp
Value type A generalized boolean

Initial value +

GBBopen 1.5 Reference
10 1 Starting Up

preferred-browser [Variable]

Purpose
Specify the preferred browser program.

Package :common-lisp-user
Module Defined in startup.lisp
Value type A string

Initial value (see the first example below)

Description

To change the preferred browser, set the value of xpreferred-browser~ in either your Common
Lisp initialization file or your personal gbbopen—-init.1lisp file. Because startup.lisp is under
Subversion source control, changing startup.1isp directly is not recommended.

See also
browse-hyperdoc (page 318)

Examples
Here is the setting that is made in startup.lisp:

(defvar *preferred-browserx
;7 On Mac OSX we defer to the 0OS default browser:
#+ (or macosx darwin)
"open"
;7 LispWorks (non-Windows) and SBCL do not search PATH for programs, so
;7 the path must be explicitly included in the preferred browser

setting:
#+ (or (and lispworks (not win32)) sbcl) "/usr/bin/firefox"
#—-(or macosx darwin (and lispworks (not win32)) sbcl) "firefox")

Specify a different browser (in a personal gbbopen-init.1lisp file) on Linux machines:

(in-package :common-lisp-user)

#+linux

(setf xpreferred-browserx
;7 Lispworks (non-Windows) and SBCL do not search PATH for programs, so
;; the path must be explicitly included in the preferred browser setting:
#+ (or lispworks sbcl) "/usr/bin/opera"
#—-(or lispworks sbcl) "opera")

Note
LispWorks (non-Windows platforms) and SBCL do not perform a PATH search for programs, so the
browser-program path must be explicitly included in the preferred browser setting.

GBBopen 1.5 Reference
1 Starting Up 11

http://subversion.tigris.org
http://www.lispworks.com
http://sbcl.sourceforge.net

sym-file-verbose [Variable]

Purpose

Controls whether the mapping from * . sym pseudo-symbolic-link files to target module directories is
shown during gbbopen-modules directory processing.

Package :common-lisp-user

Module Defined in gbbopen-modules-directory.lisp
Value type A generalized boolean

Initial value ni1

Example

Show = . sym pseudo-symbolic-link file to target module-directory mapping gbbopen-modules
directory processing on startup module loading (after <install-directory>/initiate.lisp has
been loaded):

> (setf xsym-file-verbosex ’'t)

t

> :startup

;; Loading <install-dir>/startup.lisp

;; GBBopen is installed in <install-dir>

;7 Your "home" directory is <homedir>

;; Loading <install-dir>/source/module-manager/module-manager-loader.lisp

HY Loading <install-dir>/source/module-manager/module-manager.lisp

- Loading <install-dir>/source/module-manager/module-manager—-user.lisp

;7 Loading <install-dir>/source/modules.lisp

;7 No shared module definitions were found in
<install-dir>/shared-gbbopen-modules/.

;; Loading personal module definitions from <homedir>/gbbopen-modules/...

;7 Pseudo (*.sym) link <homedir>/gbbopen-modules/an—-app.sym ——>
/usr/local/an-app/
; Loading /usr/local/an-app/modules.lisp

vV VvV H

GBBopen 1.5 Reference
12 1 Starting Up

define-repl-command command-name-spec lambda-list [declaration™ | documentation] [Macro]
form™

Purpose
Define a top-level REPL (read-eval-print loop) command.

Package :common-1lisp-user (alsoimported into and exported from :module-manager)

Module Defined in extended-repl.lisp

Arguments

command-name-spec A command-name or a list (command-name option*)
lambda-list A lambda-list

declaration A declare expression (not evaluated)

documentation A documentation string (not evaluated)

form A form

Detailed syntax
option ::= :add-to-native-help| :no-help | :no-cl-user—function

Terms

command-name A keyword symbol naming the command

Description

The arguments to the command are not evaluated before the command is invoked; it is up to the
command to perform argument evaluation if needed (see the example, below).

If the : add-to—-native-help option is specified, then the command and its documentation string
are added to the Common Lisp implementation’s primary REPL help; otherwise the command is only
added to the extended-REPL commands help that is displayed by the : commands REPL command.
(Not all Common Lisp implementations distinguish primary and secondary command-help levels.)

If the : no—help option is specified, then the command is not added to either the primary or
secondary help displays.

An equivalent function in the : common-1isp-user package is normally defined for the
command-name keyword command, and this function can be used when REPL keyword-command
processing is not fully supported. However, a : common-1isp-user functional version of the
command is not defined if the :no-cl-user-function option is specified.

Documentation is a documentation string to be associated with the REPL command command-name.

See also
startup-module (page 16)

Examples
Define a REPL command named :ds to be a handy shortcut to the Common Lisp describe function:
(define-repl-command (:ds :add-to-native-help) (obj)
"Describe object”
(describe (eval obj)))

GBBopen 1.5 Reference
1 Starting Up 13

define-repl-command

Define a REPL command named : my-app that compiles and loads the module : my-app and sets the
current package to the : gbbopen-user package:

(define-repl-command :my-app (&rest options)
"Compile and load my GBBopen application module"
(startup—-module :my-app options :gbbopen-user))

define-repl-command

GBBopen 1.5 Reference
14 1 Starting Up

funcall-in-package symbol package-name srest args [Function]

Purpose

Apply a function to arguments when the package containing the function may not exist until
execution time.

Package :common-1isp-user (not exported)

Module Definedin initiate.lisp (orin startup.lisp,if initiate.lisp is not used to
initiate GBBopen)

Arguments

symbol A symbol

package-name A package name

args Arguments to the function

Description

This function provides a convenient means of applying a function to arguments, when the package
containing the function may not exist until execution time. The function to be applied is determined
at runtime by using the name of symbol to find the symbol with the same name in package and using
it as the function designator.

Example

Define a REPL command named : my-app that compiles and loads the module : my-app, sets the
current package to the : gbbopen-user package, and then calls the function startup in the package
:my-app-package that is defined when the :my-app module is loaded:

(define-repl-command :my—-app (&rest options)
"Compile and load my GBBopen application module"
(startup—-module :my-app options :gbbopen-user)
;; Call the startup function:
(funcall-in-package ’#:startup :my-app-package))

GBBopen 1.5 Reference
1 Starting Up 15

startup-module module-name options soptional package-name [Function]

Purpose

Compile and load a GBBopen module, even if the Module Manager Facility (see page 21) is not yet
loaded, and optionally set the current package.

Package :common-1lisp-user (not exported)

Module Definedin initiate.lisp

Arguments
module-name A keyword symbol naming a module
option Any of the following keywords:
:create-dirs Creates any needed directories that are missing in the compiled-
file tree
:noautorun Binds *autorun-modules* to nil during compilation and
loading
:nopatches Do not compile or load any patches

:nopropagate Cancels (overrides) a specified :propagate option

:patches-only Do not compile or load/reload any non-patch files (binds
patches-only to t during compilation and loading)

:print Incrementally prints information during compilation and loading

:propagate Applies the specified options to all required modules

:recompile Compiles files even if the existing compiled file is newer than the
source file

:reload Loads files even if they are already loaded

:source Loads from the source file even if the existing compiled file is

newer than the source file (implies : reload)

package-name A package name (default is nil)

Errors

Module module-name has not been defined.
A relative directory specification contains a circularity.

Description

This function bootstraps GBBopen loading, if needed, before calling compile-module on
module-name with options. Then, unless package-name is nil, the current package is set to the
package named by package-name. The named package does not need to be defined before calling
startup-module, but it must be defined at the conclusion of module compilation and loading.

Startup-module adds the option :propagate to the supplied options. If this propagation behavior
is not desired, the : nopropagate option can be specified to override (cancel) propagation.

See also
compile-module (page 26)
define-module (page 30)

define-repl-command (page 13)

GBBopen 1.5 Reference
16 1 Starting Up

startup-module

Example
Define a REPL command named : my-app that compiles and loads the module : my-app and sets the
current package to the : gbbopen—-user package:

(define-repl-command :my—-app (&rest options)
"Compile and load my GBBopen application module"
(startup—-module :my-app options :gbbopen-user))

startup-module

GBBopen 1.5 Reference
1 Starting Up 17

with-system-name (system-name) form™ = result™ [Macro]

Purpose

Associate system-name with REPL commands, directory definitions, and module definitions defined
in formes.

Package :common-1isp-user (alsoimported into and exported from :module-manager)
Module Defined in extended-repl.lisp

Arguments

system-name A keyword symbol identifying a system

form A form

results The values returned by evaluating the last form

Returns
The values returned by evaluating the last form.

See also

define-relative-directory (page 33)
define-root-directory (page 35)
define-module (page 30)
define-repl-command (page 13)

Examples

Define a REPL command named :my-app associated with system :my-app that compiles and loads
the module :my-app and sets the current package to the : gbbopen—-user package:

(with-system—name (:my-app)
(define-repl-command :my-app (&rest options)
"Compile and load my GBBopen application module"
(startup-module :my-app options :gbbopen-user)))

Now, show the commands associated with system :my-app:

> :commands :my-app
Command Description

rmy-—app Compile and load my GBBopen application module

Now, undefine all the commands, directories, and module definitions associated with system :my-app:

> :undefine-system :my-app

Really undefine commands, directories, & modules of :my-app? vy
;7 System :my-app undefined.

> :commands :my—app

;7 System :my-app was not found.

>

GBBopen 1.5 Reference
18 1 Starting Up

with-system-name

Notes

A developer will typically wrap the define-repl-command forms in an application’s commands.lisp
file with a single with-system-name macro and the definitions in the application’s modules.1lisp
file with a second with-system-name macro.

with-system-name

GBBopen 1.5 Reference
1 Starting Up 19

20

2 Module Manager Facility

The Module Manager Facility provides a lightweight and easy to use mechanism for compiling and
loading module files. The facility keeps track of the dependencies between modules and the modules
that have been compiled and loaded. The Module Manager Facility was designed to be easy to use, yet
it is powerful enough to manage substantial software projects, each operating on multiple hardware
platforms and Common Lisp implementations. Other, more complex, defsystem packages, such as
(ASDF), are available, but their complexity makes defining and maintaining correct system
definitions difficult.

The :module-manager module is automatically loaded by the GBBopen
<install-directory>/startup.lisp file (by the module-manager—-loader.1lisp file located in
the module-manager subdirectory). If a gbbopen—init.1isp file (source or compiled) is present in
the user’s “home” directory, it is loaded immediately following the loading of the Module Manager
Facility. A personal <homedir>/gbbopen-init.1isp file is very useful for defining GBBopen
parameters and other personalizations (see Section 1).

Key concepts
The Module Manager Facility incorporates several important concepts:

e Dependencies are maintained among modules, rather than among individual files. Defining
compilation and loading dependencies at the file level (and maintaining those dependencies as
applications and libraries evolve) is both complex and error prone. Instead, each Module
Manager module definition specifies a total ordering of any other modules that it requires
(directly) as well as a total ordering of the individual files that comprise the module. (It is an
error for a file to be associated with more than one module.)

e A total ordering of all the individual files that are required and used by a module is generated
from the module definitions. The Module Manager Facility expands a module’s specified
required modules recursively to obtain a fully expanded sequence of all the modules that are
required (directly or indirectly) by the module. The individual files associated with each module
in this fully expanded sequence of required modules define the sequence of all the individual
files that must be possibly compiled and/or loaded as part of compiling or loading the module.

e Recompilation and reloading dependencies are specified as options associated with individual
files. For example, if the option : forces-recompile is specified for a file and that file needs to
be recompiled, all files later in the total file sequence need to be recompiled and reloaded. This
simple, “somewhat aggressive” recompilation mechanism replaces complex definitions of
pairwise dependencies between individual files (and the risk of missed and
no-longer-appropriate dependencies), but at the cost of some unneeded recompilation. It also
simplifies handling dependencies that exist between some files in a requiring module and files in
ones of that module’s required modules when each module is supported by a different
developer/maintainer. A developer only needs to consider whether a file includes forms (such as
macro definitions and compiler transforms) that may effect the compilation and/or loading of
downstream files (whether or not those files are known to the developer). With today’s fast
Common Lisp compilers, some unnecessary recompilation is a small price to pay for easier and
more likely to be correct dependency specifications.

e The fully expanded required module sequences of all modules (and therefore the compilation
and loading sequence of files for all modules) must be consistent. This requirement is checked by
the Module Manager and ensures that the ordering of file compilation and loading will be
maintained no matter what module (or modules) is being loaded. Ordering consistency is
important in avoiding unnecessary recompilation of unchanged files if different modules were
allowed to specify their sequence of overlapping required modules differently. Although

GBBopen 1.5 Reference
2 Module Manager Facility 21

http://common-lisp.net/project/asdf/

required-module ordering consistency is a very strong constraint—especially when
independently development modules use common libraries as required modules—in practice,
existing required-module orderings quickly eliminate most “otherwise arbitrary”
required-module orderings. Where two required modules are not constrained as to their
pairwise ordering, the convention of specifying the module that is earlier alphabetically first is
recommended.

Separate compiled-file directory trees are created for each Common Lisp implementation and
platform. These compiled-file directories mirror the directory structure of the original source-file
directory tree of a system. This separation makes packaging and distributing compiled files for
one or more platforms (with or without the source tree) simple by including only the desired
directory trees.

Freezing a release (and providing patches later, if needed) are important phases of the release

life cycle of some applications. Support for freezing and patches that are in keeping with the
above concepts is provided explicitly by Module Manager operators.

Stand-alone usage

To bootstrap the Module Manager Facility stand-alone (separate from the GBBopen Project software
tree), do the following:

e create a “root” directory to contain the Module Manager software tree

(for example: $ mkdir my-tree)

e create the Module Manager portion of the source tree in the newly created “root” directory

(for example: $ cd my-tree ; mkdir -p source/module-manager)

e copy the module-manager-loader.lisp, module-manager.lisp,

module-manager—user. 1isp files into the source/module-manager directory

e start your Common Lisp implementation and then load the module-manager—loader.lisp

file
> (load "my-tree/source/module-manager/module-manager—-loader")

e compile the :module-manager and :module-manager—user modules:

> (module-manager:compile-module :module-manager-user :create-dirs :propagate)

After performing the above steps, the Module Manager can be used stand-alone by loading
source/module-manager—-loader.lisp as part of your Common Lisp initialization.

Module Manager entities

Descriptions of Module Manager entities follow.

22

GBBopen 1.5 Reference
2 Module Manager Facility

http://gbbopen.org/svn/GBBopen/trunk/source/module-manager/module-manager-loader.lisp
http://gbbopen.org/svn/GBBopen/trunk/source/module-manager/module-manager.lisp
http://gbbopen.org/svn/GBBopen/trunk/source/module-manager/module-manager-user.lisp

automatically-create-missing-directories [Variable]

Purpose

Controls whether any directories that are missing in the compiled-file tree should be created when
needed.

Package :common-1lisp-user (alsoimported into and exported from :module-manager)
Module :module-manager

Value type A generalized boolean

Initial value <

Description

By default, the Module Manager will create any needed directories in the compiled-file tree
automatically during module compilation. For tighter control over new directory creation,
automatically-create-missing-directories can be set to nil, causing compile-module to
signal a continuable error during compilation if a needed directory is missing in the compiled-file tree.
When *automatically-create-missing-directories™ has been set to nil, the compile-module
option :create—dirs provides a convenient way to bind
*automatically-create-missing-directories® to true during compilation of a specified module.

See also

compile-module (page 26)

Example

Have the Module Manager generate a continuable error during module compilation when a needed
directory in the compiled-file tree is missing (and the compile-module option : create-dirs was not
specified when compiling the module needing that missing directory):

(setf common-lisp-user::xautomatically-create-missing-directoriesx nil)

GBBopen 1.5 Reference
2 Module Manager Facility 23

autorun-modules [Variable]

Purpose
Indicates whether a module should evaluate autorun forms when it is loaded.

Package :common-1lisp-user (alsoimported into and exported from :module-manager)
Module :module-manager

Value type A generalized boolean

Initial value True

Description

The value of *autorun-modules* can be used to conditionally evaluate forms when module files are
loaded. By default, the value of *autorun-modules* is set to true, but it can be set or bound to ni1l
to disable conditional autorun forms. The compile-module or load-module option :noautorun can
also be specified to bind *autorun-modules* to nil during module compilation and loading.

See also

compile-module (page 26)
load-module (page 47)
load-module-file (page 49)

Example
Conditionally evaluate the ht tp—test function when the file ht tp-test.11isp that includes the
following form is loaded:

(when common-lisp-user::xautorun-modulesx*
(http-test "GBBopen.org" 80))

GBBopen 1.5 Reference
24 2 Module Manager Facility

patches-only [Variable]

Purpose

Controls whether regular files (non-patch files) in modules are compiled and loaded by the Module
Manager.

Package :common-1lisp-user (alsoimported into and exported from :module-manager)
Module :module-manager

Value type A generalized boolean

Initial value ni1

Description

By default, *patches-only* is set to ni1, but it can be set to true to instruct compile-module and
load-module to bypass compiling and loading regular files (non-patch files) in modules. By setting
patches-only to true after loading an application, the image is “frozen” so that only patches will be
applied by subsequent uses of compile-module or load-module.

See also

compile-module (page 26)
load-module (page 47)

Example
Compile, load, and freeze the GBBopen application defined by module :my-app:

> (progn (compile-module :my-app :propagate)
(setf xpatches-onlyx "t))

GBBopen 1.5 Reference
2 Module Manager Facility 25

compile-module module-name srest options [Function]

Purpose
Compiles and loads the files in a module.

Package :module-manager

Module :module-manager

Arguments
module-name A keyword symbol naming a module

option

:create-dirs

:noautorun

:nopatches
:nopropagate
:patches-only

:print
:propagate

:recompile

:reload

:source

Errors
Module module-name has not been defined.

A relative directory specification contains a circularity.

Module module-name or one of its required modules has not been loaded and *patches-only* is true.

Description

These file options, when specified for individual files in the module definition (see define-module),
have the following effects (overriding the behavior of options supplied to compile-module):

Any of the following keywords:

Creates any needed directories that are missing in the compiled-
file tree

Binds *autorun-modules* to nil during compilation and
loading

Do not compile or load any patches
Cancels (overrides) a specified :propagate option

Do not compile or load/reload any non-patch files (binds
patches-only to t during compilation and loading)

Incrementally prints information during compilation and loading
Applies the specified options to all required modules

Compiles files even if the existing compiled file is newer than the
source file

Loads files even if they are already loaded

Loads from the source file even if the existing compiled file is
newer than the source file (implies : reload)

:developing If the patch file has changed, recompile and reload it (patch files only)
:forces-recompile If the file has changed, recompile and reload all subsequent files and modules
:noload Compile, but do not load the file

:recompile Always recompile the file

:reload Always reload the file

:skip-recompile Skip recompiling the file if it has been loaded already
(takes precedence over other recompilation decisions)

:source Do not compile the file (load the source instead)

26

GBBopen 1.5 Reference
2 Module Manager Facility

compile-module

See also

:disable-compiler-macros

:full-safety
*automatically-create-missing-directories™
autorun-modules

patches-only

define-module

load-module

load-module-file

startup-module

Example

(page
(page
(page
(page
(page
(page
(page
(page
(page

62)
63)
23)
24)
25)
30)
47)
49)
16)

Compile and load the GBBopen User module and all its required modules, creating new compilation

directories if they do not exist already:

(compile-module :gbbopen-user :propagate

REPL Note

Compile-module can be invoked using the REPL command:

:cm [module—-name [option*]]

which remembers the last specified module-name and options as default values for the command.

GBBopen 1.5 Reference
2 Module Manager Facility

:create-dirs)

compile-module

27

continue-patch form* [Macro]

Purpose
Continue the definition of a multiple top-level form patch to a module.

Package :module-manager

Module :module-manager

Arguments
form A form
Errors

A patch has not been started with start-patch.

Description

The continue-patch macro, along with start-patch and finish-patch, can be used to define a patch
as multiple top-level forms in the same patch file if a patch cannot be defined as a single patch form.

See also

allow-redefinition (page 65)
define-module (page 30)
describe-module (page 37)
describe-patches (page 39)
finish-patch (page 40)
get-patch-description (page 44)
parse-date (page 181)
patch (page 53)
patch-loaded-p (page 55)
start-patch (page 57)
undefmethod (page 128)
Example

Define a more complex patch (in a file named my-app-p002.1isp in the patches subdirectory of the
module):

(start-patch (2 "06-23-08"
rauthor "Corkill™
:description "A more complex patch example")
(printv "More complex example patch started!"))

(eval-when (:compile—toplevel)
(continue-patch
(printv "Defining compile-time-only-macro-for-patch...")
(defmacro compile-time-only-macro-for-patch (x)

Yyx)))

(eval-when (:compile-toplevel :load-toplevel :execute)

GBBopen 1.5 Reference
28 2 Module Manager Facility

continue-patch

(continue-patch
(printv "Defining macro-for-patch at compile & load time...")
(defmacro macro—-for-patch (x)

Yx)))

(continue-patch
(printv "Using macro-for-patch at load time...")
(macro—-for-patch abc))

(eval-when (:compile-toplevel :load-toplevel :execute)
(continue-patch
(printv "Using macro-for-patch at compile & load time...")
(macro—for-patch xyz)))

(eval-when (:compile-toplevel)
(continue-patch
(printv "Using compile-time-only-macro-for-patch...")
(compile-time-only-macro-for-patch abc)))

(finish-patch
(printv "More complex example patch finished!"))

continue-patch

GBBopen 1.5 Reference
2 Module Manager Facility 29

define-module module-name [documentation] module-option* [Macro]

Purpose
Defines a module to the Module Manager Facility.

Package :module-manager
Module :module-manager

Arguments

module-name A keyword symbol naming a module
documentation A documentation string (not evaluated)
module-options See below

Errors

The : requires module option specifies a fully expanded required-module order that contains a
circularity.

The : requires module option specifies a fully expanded required-module order that conflicts with
the fully expanded required-module order in a previously defined module.

Detailed syntax
module-option ::= (:requires module-name™) |

(:directory directory-specifier) |

(:files ﬁ]e-speciﬁer*) |

(:patches ﬁle-speciﬁer*)
directory-specifier ::= root-or-relative-directory subdirectory™
file-specifier ::= file-name |

(file-name ﬁ]e-option*)

file-option ::= : recompile | :reload | :source | : forces—recompile | :noload

Terms

root-or-relative-directory A keyword naming a root or relative directory, a keyword naming another
module, or nil, indicating that the module is rooted at the
x*load-truenamex value in effect when the module definition is loaded

subdirectory A string naming a subdirectory
file-name A string naming a file

module-name A keyword symbol naming a module
Description

The module-options :requires, :directory, : files, and :patches can be specified in any order,
but at most one of each is allowed.

If a :directory module option is not specified, an implicit root directory for the module (at the
xload-truenamex of the file containing the define-module form) is used. If the :directory
module option specifies a keyword naming another module, the directory specification of the named
module is used as the base (root or relative) directory for the module that is being defined. If both a
module and a root or relative directory definition have the same name, the directory definition takes
precedence over the module directory specification.

GBBopen 1.5 Reference
30 2 Module Manager Facility

define-module

The : requires module option specifies, in order, the modules that must be loaded before this
module. The fully expanded required-module order determined from the specified : requires module
option must be consistent with all previously defined modules.

The : files module option specifies, in order, the files that are compiled (when appropriate) and
loaded for this module. Similarly, the : patches module option specifies, in order, the patch files that
are compiled (when appropriate) and loaded for this module. The combination of the : requires,
:files, and :patches module options specifies a total ordering of all the files that must be compiled
and loaded for this module (the files associated with each of the required modules followed by the files
specified for this module followed by the patch files associated with each of the required modules
followed by the patch files specified for this module).In order to maintain an invariant patch ordering,
patches should be added sequentially to the main (last loaded) module of an application. The source
files for patches should be placed in a subdirectory named patches in the module’s source-file
directory.

File-options have the following effects:

:developing If the patch file has changed, recompile and reload it (patch files only)
:forces-recompile If the file has changed, recompile and reload all subsequent files and modules
:noload Compile, but do not load the file

:recompile Always recompile the file

:reload Always reload the file

:skip-recompile Skip recompiling the file if it has been loaded already
(takes precedence over other recompilation decisions)

:source Do not compile the file (load the source instead)

The documentation string associated with a module can be accessed and set by using Common Lisp’s
documentation generic function with the module’s module-name and the doc-type module.

See also

define-relative-directory (page 33)
define-root-directory (page 35)

describe-module (page 37)
describe-patches (page 39)
compile-module (page 26)
continue-patch (page 28)
get-patch-description (page 44)
finish-patch (page 40)
load-module (page 47)
load-module-file (page 49)
patch (page 53)
patch-loaded-p (page 55)
start-patch (page 57)
with-system-name (page 18)

with-module-redefinitions (page 59)

Examples
Define a root directory and module for :my-app:

(define-root-directory :my-app-root
(make-pathname :directory "~/my-app"))

GBBopen 1.5 Reference
2 Module Manager Facility 31

define-module

(define-module :my-app
"My simple application module"
(:requires :gbbopen-user)
(:directory :my-app-root)

(:files "preamble"
("macros" :forces-recompile)
"classes"
"my-app"
"epilogue"))

Define a module for :my—app rooted relative to the file containing the define-module form:

(define-module :my-app
"My simple application module"
(:requires :gbbopen-user)
(:files "preamble"
("macros" :forces-recompile)
"classes"
"my-app"
"epilogue"))

Retrieve and then modify the documentation string of module : my—-app:

> (documentation ' :my-app ’'module)

"My simple application module"

> (setf (documentation ’:my-app ’'module)
"My way cool application module"

> (documentation ' :my-app ’‘module)

"My way cool application module"

"My way cool application module")

>

define-module

GBBopen 1.5 Reference

32 2 Module Manager Facility

define-relative-directory name directory srest subdirectories [Function]

Purpose
Defines a directory relative to a root or relative directory or to the directory specification of a module

definition.

Package :module-manager

Module :module-manager

Arguments
name A keyword symbol naming the relative directory
directory The keyword symbol name of a root or relative directory or the name of a module

subdirectories One or more strings specifying, in order, subdirectories from directory to the relative
directory. (The keyword :up or :back can also be supplied in addition to any of these
strings, indicating to go upward one semantic or syntactic level of directory structure,
respectively.)

Description

Root and relative directory definitions are used to isolate file-system details from module definitions.
A relative directory is defined in relation to another directory definition, that is either a root directory
or another relative directory (which itself is eventually associated with a root directory). If this root
directory location changes, every relative directory associated with it is adjusted automatically.

The documentation string associated with a relative directory can be accessed and set by using
Common Lisp’s documentation generic function with the directory’s name and the doc-type
directory.

See also

define-root-directory (page 35)
get-directory (page 42)
show-defined-directories (page 56)
with-system-name (page 18)
Examples

Define a relative directory below :my-app-root named :my-tests:

(define-relative-directory :my-tests
"The tests directory for My App"
:my—-app-root "tests")

Define another relative directory named :my-performance-tests below :my-tests:

(define-relative-directory :my-performance-tests
"The performance-tests subdirectory for My App"
:my-tests "performance")

Define a data directory sibling to the source directory of : my—app module:

GBBopen 1.5 Reference
2 Module Manager Facility 33

define-relative-directory

(define-relative-directory :my-app-data
"The data directory for My App"
rmy—app :up "data")

Retrieve and then modify the documentation string of the relative directory named :my-tests:

> (documentation ' :my-app-data ’'directory)

"The data directory for My App"

> (setf (documentation ’:my-app-data ’‘directory)

"The data directory for my way cool application")
"The data directory for my way cool application"

> (documentation ' :my-app-data ’'directory)

"The data directory for my way cool application"

>

define-relative-directory

GBBopen 1.5 Reference
34 2 Module Manager Facility

define-root-directory name directory-specification s rest subdirectories [Function]

Purpose
Define a root directory.

Package :module-manager
Module :module-manager

Arguments
name A keyword symbol naming the root directory or a list containing the
keyword-symbol name and, optionally, an application-version-identifier string

directory-specification One of the following:

e A pathname specifying the root directory
e A keyword naming a previously defined root directory

e A string specifying the root directory (only if a documentation string is
supplied; otherwise, convert the root directory string to a pathname)

e A symbol whose value is one of the above

subdirectories One or more strings specifying, in order, subdirectories from
directory-specification to the root directory. (The keyword :up or :back can
also be supplied in addition to any of these strings, indicating to go upward
one semantic or syntactic level of directory structure, respectively.)

Description

Root and relative directory definitions are used to isolate file-system details from module definitions.
Root directories specify a fixed anchor directory for a tree of relative directory definitions. If the

root directory is redefined to a new location, all relative directories beneath it are updated
automatically.

Note: When a root directory is used as the directory-specification for a new root directory, the new
root-directory location will not be changed if the location of the source root directory is changed.

When an application-version-identifier string is supplied in name, it is concatenated to the standard
<platform-dir> compiled-directory name for all compiled module files that are defined relative to this
root-directory.

The documentation string associated with a root directory can be accessed and set by using Common
Lisp’s documentation generic function with the directory’s name and the doc-type directory.

See also

define-relative-directory (page 33)
get-directory (page 42)
get-root-directory (page 46)

show-defined-directories (page 56)

with-system-name (page 18)

GBBopen 1.5 Reference
2 Module Manager Facility 35

define-root-directory

Examples
Define a root directory named :my—-app-root:

(define-root-directory :my—-app-root
"The installation directory for My App"
(make-pathname :directory "~/my-app"))

Define a root directory named :my-app-root to be the directory containing the file containing the
define-root-directory form:

(define-root-directory :my-app-root
"The installation directory for My App"
*load-truenamex)

Define a root directory named :my-app-root to be the directory containing the file containing the
define-root-directory form, but if the :my—-app-preprelease feature is present, place the
compiled files in a separate “beta” compile tree:

(define-root-directory ’ (:my—-app-root #+my-app-prerelease "beta")
"The installation directory for My App"
*load—-truenamex)

Retrieve and then modify the documentation string of the root directory named : my-app-root:

> (documentation ' :my-app-root ’‘directory)
"The installation directory for My App"
> (setf (documentation ’:my-app-root ’‘directory)
"The installation directory for my way cool application")
"The installation directory for my way cool application"
> (documentation ' :my-app-root ’‘directory)

"The installation directory for my way cool application”
>

define-root-directory

GBBopen 1.5 Reference
36 2 Module Manager Facility

describe-module module-name [Function]

Purpose
Print information about a module.

Package :module-manager
Module :module-manager

Arguments
module-name A keyword symbol naming a module

Errors

Module module-name has not been defined.
A relative directory specification contains a circularity.

Description
The description is printed to the *standard-output* stream.

Files and patch files shown with an asterisk following their load time indicate that the source file has
been modified since that file was loaded.

See also
define-module (page 30)

Examples
Describe the : gbbopen—test module before it has been loaded:

> (describe-module :gbbopen-test)
Module :gbbopen-test (not loaded)
The GBBopen Test module performs basic regression (trip) tests
on the GBBopen Core entities.
Requires: (:gbbopen-user)
Fully expanded requires: (:module-manager :module-manager-user
:portable—-threads :gbbopen-tools :gbbopen-core
:os—interface :gbbopen-user)
Source directory: <install-dir>/source/gbbopen/test/
Compiled directory: <install-dir>/<platform-dir>/gbbopen/test/
Forces recompile date: None
Files: basic-tests (:reload)
Patches: basic-tests-p001
basic-tests-p002 (:developing)

Describe the : gbbopen—test module after it has been loaded:

> (describe-module :gbbopen-test)
Module :gbbopen-test (loaded)
The GBBopen Test module performs basic regression (trip) tests
on the GBBopen Core entities.

GBBopen 1.5 Reference
2 Module Manager Facility 37

describe-module

Requires: (:gbbopen-user)

Fully expanded requires: (:module-manager :module-manager—-user
:portable-threads :gbbopen-tools :gbbopen-core
:os—interface :gbbopen-user)

Source directory: <install-dir>/source/gbbopen/test/

Compiled directory: <install-dir>/<platform-dir>/gbbopen/test/

Forces recompile date: None

Files: Jun 27 05:22 Dbasic-tests (:reload)

Patches: Jun 27 05:22 basic-tests-p001

Jun 27 05:22% basic-tests-p002 (:developing)

describe-module

38

GBBopen 1.5 Reference
2 Module Manager Facility

describe-patches module-name

Purpose
Print information about patch id to a module.
Package :module-manager

Module :module-manager

Arguments
module-name A keyword symbol naming a module

Errors
Module module-name has not been defined.

See also

continue-patch (page 28)
define-module (page 30)
describe-module (page 37)
finish-patch (page 40)
get-patch-description (page 44)
parse-date (page 181)
patch (page 53)
patch-loaded-p (page 55)
start-patch (page 57)
Examples

Display the patches to module :my-app:

> (describe-patches ' :my-app)

H . Jun 22, 2008 Corkill (loaded Jun 24 13:08)
¥ A simple example patch
;i 2 Jun 23, 2008 Corkill (loaded Jun 24 13:08)

H A more complex patch example

>

Display the patches to module : gbbopen-test (when that module has not been loaded):

> (describe-patches '’ :gbbopen-test)
;7 Module :gbbopen-test is not loaded
>

GBBopen 1.5 Reference
2 Module Manager Facility

[Function]

39

finish-patch form™

Purpose

[Macro]

Finish the definition of a multiple top-level form patch to a module.

Package :module-manager

Module :module-manager

Arguments
form A form
Errors

A patch has not been started with start-patch.

Description

The start-patch macro, along with continue-patch and finish-patch, can be used to define a patch
as multiple top-level forms in the same patch file if a patch cannot be defined as a single patch form.

65)
28)
30)
37)
39)
44)
181)
53)
55)
57)
128)

Define a more complex patch (in a file named my-app-p002.1isp in the patches subdirectory of the

See also
allow-redefinition (page
continue-patch (page
define-module (page
describe-module (page
describe-patches (page
get-patch-description (page
parse-date (page
patch (page
patch-loaded-p (page
start-patch (page
undefmethod (page
Example
module):

(start-patch (2 "06-23-

rauthor

08"
"Corkill"

:description "A more complex patch example")
(printv "More complex example patch started!"))

(eval-when (:compile—toplevel)

(continue-patch

(printv "Defining compile-time-only-macro-for-patch...")
(defmacro compile-time-only-macro-for-patch (x)

Yyx)))

(eval-when (:compile-toplevel :load-toplevel :execute)

40

GBBopen 1.5 Reference
2 Module Manager Facility

finish-patch

(continue-patch
(printv "Defining macro-for-patch at compile & load time...")
(defmacro macro—-for-patch (x)

Yx)))

(continue-patch
(printv "Using macro-for-patch at load time...")
(macro—-for-patch abc))

(eval-when (:compile-toplevel :load-toplevel :execute)
(continue-patch
(printv "Using macro-for-patch at compile & load time...")
(macro—for-patch xyz)))

(eval-when (:compile-toplevel)
(continue-patch
(printv "Using compile-time-only-macro-for-patch...")
(compile-time-only-macro-for-patch abc)))

(finish-patch
(printv "More complex example patch finished!"))

finish-patch

GBBopen 1.5 Reference
2 Module Manager Facility 41

get-directory name srest subdirectories = pathname [Function]

Purpose
Return the pathname based on a root directory, a relative directory, or a module.

Package :module-manager

Module :module-manager

Arguments
name A keyword symbol naming a root directory, a relative directory, or a module.
subdirectories One or more strings specifying, in order, subdirectories to be appended to the

root directory, relative directory, or module directory. (The keyword : up or
:back can also be supplied in addition to any of these strings, indicating to go
upward one semantic or syntactic level of directory structure, respectively.)

pathname A pathname

Returns
The pathname.

Errors
A relative directory specification contains a circularity.

Description

Root and relative-directory definitions are searched first. If no name directory definition is found,
module definitions are searched. Root directories specify a fixed anchor directory for a tree of
relative directory definitions. The pathname returned for relative directories is based on the source
pathname.

See also

define-relative-directory (page 33)
define-root-directory (page 35)
get-root-directory (page 46)
show-defined-directories (page 56)

Examples
Return the pathname of the :my—-app-root root directory:

> (get-directory :my-app-root)
#P 1] N/my—app/ (1]
>

Return the pathname of the : gbbopen-tools relative directory:

> (get-directory :gbbopen-tools)
#P"<install-dir>/source/tools/"
>

Return this same pathname, this time computed from the : gbbopen-root root directory:

GBBopen 1.5 Reference
42 2 Module Manager Facility

get-directory

> (get-directory :gbbopen-root "tools")
#P"<install-dir>/source/tools/"
>

Return the pathname of the : gbbopen-user module:

> (get-directory :gbbopen-user)
#P"<install-dir>/source/gbbopen/"
>

get-directory

GBBopen 1.5 Reference
2 Module Manager Facility 43

get-patch-description id module-name = id, date, author, description, date-loaded, [Function]

file-name or nil

Purpose

Return the information describing patch id to a module.

Package :module-manager
Module :module-manager

Arguments

id An object

module-name A keyword symbol naming a module
date A Universal Time

author A string

description A string or a proper list of strings or nil
date-loaded A Universal Time

file-name A string

Returns

Six values: id, date, author, description, date-loaded, and file-name, or nil if the patch has not been

loaded.

Errors
Module module-name has not been defined.

See also

continue-patch (page 28)
define-module (page 30)
describe-module (page 37)
describe-patches (page 39)

finish-patch (page 40)
parse-date (page 181)
patch (page 53)
patch-loaded-p (page 55)
start-patch (page 57)
Examples

Get the description values for patch 1 to module :my-app:

> (get-patch-description 1 ' :my-app)
1

3423139200

"Corkill"

"A simple example patch"

3423316130

"my—-app-p001"

>

44

GBBopen 1.5 Reference
2 Module Manager Facility

get-patch-description

and for non-existent patch 3:

> (get-patch-description 3 ' :my-app)
nil
>

and for patch 1 in module : gbbopen-test (when that module has not been loaded):

> (get-patch-description 1 ' :gbbopen-test)
nil
>

get-patch-description

GBBopen 1.5 Reference
2 Module Manager Facility 45

get-root-directory name = pathname [Function]

Purpose
Return the pathname of the root directory of a root directory, a relative directory, or a module.

Package :module-manager
Module :module-manager

Arguments
name A keyword symbol naming a root directory, a relative directory, or a module.
pathname A pathname

Returns
The root-directory pathname of the defined directory or module.

Description

Root and relative-directory definitions are searched first. If no name directory definition is found,
module definitions are searched. Root directories specify a fixed anchor directory for a tree of
relative directory definitions.

See also

define-relative-directory (page 33)
define-root-directory (page 35)
get-directory (page 42)
show-defined-directories (page 56)

Examples
Return the root-directory pathname of the : gbbopen-root root directory:
> (get-root-directory :gbbopen-root)

#P"<install-dir>/"
>

Return the root-directory pathname of the : gbbopen-tools relative directory:

> (get-root-directory :gbbopen-tools)
#P"<install-dir>/"
>

Return the root-directory pathname of the : gbbopen-user module:

> (get-root-directory :gbbopen-user)
#P"<install-dir>/"
>

GBBopen 1.5 Reference
46 2 Module Manager Facility

load-module module-name srest options [Function]

Purpose
Load the files in a module.

Package :module-manager
Module :module-manager

Arguments
module-name A keyword symbol naming a module
option Any of the following keywords:
:noautorun Binds *autorun-modules* to nil during loading
:nopatches Do not load any patches
:nopropagate Cancels (overrides) a specified :propagate option
:patches-only Do not load/reload any non-patch files (binds *patches-only* to t

during loading)
:print Incrementally prints information during loading
:propagate Applies the specified options to all required modules
:reload Loads files even if they are already loaded
:source Loads from the source file even if the existing compiled file is

newer than the source file (implies : reload)

Errors

Module module-name has not been defined.
A relative directory specification contains a circularity.
Module module-name or one of its required modules has not been loaded and *patches-only* is true.

Description

These file options, when specified for individual files in the module definition (see define-module),
have the following effects (overriding the behavior of options supplied to load-module):

:developing If the compiled patch file has changed, reload it (patch files only)
:forces-recompile If the file has changed, recompile and reload all subsequent files and modules
:noautorun Binds *autorun-modules* to nil during compilation and loading
:print Incrementally prints information during compilation and loading
:reload Always reload the file
:source Do not compile the file (load the source instead)

See also

autorun-modules (page 24)

patches-only (page 25)

compile-module (page 26)

define-module (page 30)

load-module-file (page 49)

GBBopen 1.5 Reference
2 Module Manager Facility 47

load-module

Example
Load the GBBopen User module and all its required modules:

(load-module :gbbopen-user)

REPL Note

Load-module can be invoked using the REPL command:

:1m [module-name [option*]]

which remembers the last specified module-name and options as default values for the command.

load-module

GBBopen 1.5 Reference
48 2 Module Manager Facility

load-module-file module-name file-name srest options = pathname [Function]

Purpose
Load a single file from a module.

Package :module-manager

Module :module-manager

Arguments
module-name A keyword symbol naming a module
file-name A string naming a file in the module
option Any of the following keywords:
:noautorun Binds *autorun-modules® to nil during loading
:print Incrementally prints information during loading
:source Loads from the source file even if the existing compiled file is
newer than the source file
pathname A pathname
Returns

The pathname of the loaded file.

Errors

Module module-name has not been defined.
File file-name is not associated with the module.

A relative directory specification contains a circularity.

Description

File options specified for individual files in the module definition (see define-module) are ignored by
load-module-file.

See also
autorun-modules (page 24)
define-module (page 30)
load-module (page 47)
Example

Load the source of the file tools from the GBBopen Tools module:

> (load-module-file :gbbopen-tools "tools" :source)
;; Loading <install-dir>/source/tools/tools.lisp
#P"<install-dir>/source/tools/tools.lisp"

>

GBBopen 1.5 Reference
2 Module Manager Facility 49

load-module-file

REPL Note

Load-module-file can be invoked using the REPL command:

:1mf [module-name file-name [option*]]

which remembers the last specified module-name, file-name, and options as default values for the
command.

load-module-file

GBBopen 1.5 Reference
50 2 Module Manager Facility

module-directories module-name = source-directory, compiled-directory [Function]

Purpose
Return the source and compiled directories of a module.

Package :module-manager
Module :module-manager

Arguments

module-name A keyword symbol naming a module
source-directory A pathname

compiled-directory A pathname

Returns
Two values: the source directory pathname and the compiled directory pathname.

Errors

Module module-name has not been defined.
A relative directory specification contains a circularity.

See also

define-module (page 30)
load-module-file (page 49)

Example
Return the source and compiled directories of the Agenda Shell module:

> (module-directories :agenda-shell)
#P"<install-dir>/source/gbbopen/control-shells"
#P"<install-dir>/<platform-dir>/gbbopen/control-shells"
>

GBBopen 1.5 Reference
2 Module Manager Facility 51

module-loaded-p module-name = boolean

Purpose

Determine if a module has been fully loaded into Common Lisp.

Package :module-manager
Module :module-manager

Arguments
module-name A keyword symbol naming a module
boolean A generalized boolean

Returns
True if the module has been fully loaded; nil otherwise.

Errors
Module module-name has not been defined.

See also

define-module (page 30)
load-module (page 47)

Example
Check if the Agenda Shell module has been loaded:

> (module-loaded-p :agenda-shell)
t
>

52

[Function]

GBBopen 1.5 Reference
2 Module Manager Facility

patch (id date skey author description) form™ [Macrol]

Purpose
Define a patch to a module.

Package :module-manager

Module :module-manager

Arguments

id An object

date A simple string representing a date (parsed by parse-date)
author A string (default is "Anonymous™")

description A string or a proper list of strings (default is nil)

form A form

Description

The source file for a patch should be placed in a subdirectory named patches in the module’s
source-files directory.

If a patch cannot be defined as a single patch form, the more primitive start-patch,
continue-patch, and finish-patch macros can be used to separate the patch into multiple top-level
forms in the same patch file.

See also

allow-redefinition (page 65)
continue-patch (page 28)
define-module (page 30)
describe-module (page 37)
describe-patches (page 39)
finish-patch (page 40)
get-patch-description (page 44)
parse-date (page 181)
patch-loaded-p (page 55)
start-patch (page 57)
undefmethod (page 128)
Example

Define a simple patch (in a file named my-app-p001.1isp in the patches subdirectory of the
module):

(patch (1 "06-22-08"
rauthor "Corkill"
:description "A simple example patch")
(printv "Simple example patch loaded!"))

and add the patch file to the :my—app module:

GBBopen 1.5 Reference
2 Module Manager Facility 53

54

patch

(define-module :my-app

(:requires :gbbopen-user)

(:files "preamble"
("macros" :forces-recompile)
"classes"
" my — app "
"epilogue")

(:patches "my-app-p001"))

patch

GBBopen 1.5 Reference
2 Module Manager Facility

patch-loaded-p id module-name = boolean
Purpose

Determine if patch id to module has been loaded.
Package :module-manager

Module :module-manager

Arguments

id An object

module-name A keyword symbol naming a module
boolean A generalized boolean

Returns
True if the patch has been loaded; nil otherwise.

Errors

Module module-name has not been defined.
See also

continue-patch (page 28)
define-module (page 30)
describe-module (page 37)
describe-patches (page 39)
finish-patch (page 40)
get-patch-description (page 44)
parse-date (page 181)
patch (page 53)
start-patch (page 57)
Examples

Check if patch 1 to module :my-app has been loaded:

> (patch-loaded-p 1 ' :my-app)
t
>

Check for non-existent patch 3:
> (patch-loaded-p 3 ' :my-app)
nil
>

Check for patch 1 in module : gbbopen-test (when that module has not been loaded):

> (patch-loaded-p 1 ' :gbbopen-test)
nil
>

GBBopen 1.5 Reference
2 Module Manager Facility

[Function]

55

show-defined-directories <no arguments> [Function]

Purpose
Show all root and relative-directory definitions.
Package :module-manager

Module :module-manager

See also

define-relative-directory (page 33)
define-root-directory (page 35)

get-directory (page 42)
get-root-directory (page 46)
Example

List the currently defined root and relative directories:

> (show—-defined-directories)

:gbbopen
Relative to :gbbopen-root
Subdirectories: ("gbbopen")

:gbbopen-root

Root: <install-dir>
:gbbopen-tools

Relative to :gbbopen-root

Subdirectories: ("tools")
:module—-manager—-root

Root: <install-dir>

GBBopen 1.5 Reference
56 2 Module Manager Facility

start-patch (id date skey author description) form™ [Macro]

Purpose
Start the definition of a multiple top-level form patch to a module.

Package :module-manager

Module :module-manager

Arguments

id An object

date A simple string representing a date (parsed by parse-date)
author A string (default is "Anonymous™")

description A string or a proper list of strings (default is nil)

form A form

Description

The source file for a patch should be placed in a subdirectory named patches in the module’s
source-files directory.

The start-patch macro, along with continue-patch and finish-patch, can be used to define a patch
as multiple top-level forms in the same patch file if a patch cannot be defined as a single patch form.

See also

allow-redefinition (page 65)
continue-patch (page 28)
define-module (page 30)
describe-module (page 37)
describe-patches (page 39)
finish-patch (page 40)
get-patch-description (page 44)
parse-date (page 181)
patch (page 53)
patch-loaded-p (page 55)
undefmethod (page 128)
Example

Define a more complex patch (in a file named my-app-p002.1isp in the patches subdirectory of the
module):

(start-patch (2 "06-23-08"
rauthor "Corkill™
:description "A more complex patch example")
(printv "More complex example patch started!"))

(eval-when (:compile-toplevel)
(continue-patch
(printv "Defining compile-time-only-macro—for-patch...")

GBBopen 1.5 Reference
2 Module Manager Facility 57

start-patch

(defmacro compile-time-only-macro-for-patch (x)
Yax)))

(eval-when (:compile-toplevel :load-toplevel :execute)
(continue-patch
(printv "Defining macro-for-patch at compile & load time...")
(defmacro macro—-for-patch (x)
Myx)))

(continue-patch
(printv "Using macro-for-patch at load time...")
(macro-for-patch abc))

(eval-when (:compile-toplevel :load-toplevel :execute)
(continue-patch
(printv "Using macro-for-patch at compile & load time...")
(macro-for-patch xyz)))

(eval-when (:compile—-toplevel)
(continue-patch
(printv "Using compile-time-only-macro-for-patch...")
(compile-time-only-macro-for-patch abc)))

(finish-patch
(printv "More complex example patch finished!"))

start-patch

58

GBBopen 1.5 Reference
2 Module Manager Facility

with-module-redefinitions form™ [Macro]

Purpose

Defer required-module order checking of module definitions in forms until all forms have been
processed.

Package :module-manager
Module :module-manager

Arguments
form A form

Errors

The fully expanded required-module order of a module redefined in forms conflicts with the fully
expanded required-module order of another module.

Description

Normally, the fully expanded required-module order specified by the : requires option is checked
immediately for conflicts with previously defined modules by define-module. Wrapping several
define-module forms with with-module-redefinitions allows the definitions to be conflicting
temporarily, until all the forms have been processed.

See also
define-module (page 30)

Example
Redefine several modules with deferred conflict checking:

(with-module-redefinitions
(define-module :alpha ...)
(define-module :beta ...))

(define-module :omega ...)))

GBBopen 1.5 Reference
2 Module Manager Facility 59

60

3 GBBopen Tools

The GBBopen Tools module, : gbbopen—-tools, contains useful Common Lisp additions and utilities.
Convenient (shorthand operators (see page 143) for declared fixnum, short-float, single-float,
double-float, and long-float numeric operators are provided, as are efficient pseudo probability
(see page 149) operators. Uniform access to commonly used CLOS and MOP symbols (see page 141) is
provided by the module’s : gbbopen-tools package. Date and time parsing and formatting entities
(see page 157), fixnum-based offset-universal-time functions (see page 197), and left-leaning
red-black (LLRB) trees (see page 214) are also included in GBBopen Tools.

Additional GBBopen Tools entities that are not loaded as part of the : gbbopen-tools module are
documented in the Additional GBBopen Tools section (see page 223) of this Reference. These
additional-tool entities are grouped into separate modules that can be loaded as appropriate.

Several entities in the : gbbopen-tools module that are extended by additional methods in the
:gbbopen—-core module are documented in the GBBopen Core section (see page 323) of this
Reference. These entities are:

print-object-for-sendingx

xsave/send-references-onlyx

initialize-saved/sent-instance

make-duplicate-instance

make-duplicate-instance-changing-class

omitted-slots-for-saving/sending

print-object-for-saving/sending

print-slot-for-saving/sending

with-reading-saved/sent-objects-block

with-saving/sending—-block

GBBopen Tools entities

Descriptions of GBBopen Tools entities follow.

GBBopen 1.5 Reference
3 GBBopen Tools 61

:disable-compiler-macros [Feature]

Purpose

Disable GBBopen compiler macros.
See also

:full-safety (page 63)

defem (page 82)
Example

Recompile a GBBopen application (and GBBopen itself) with all GBBopen compiler macros disabled:

(pushnew :disable-compiler-macros xfeaturesx)
(compile-module :my-app :recompile :propagate)

GBBopen 1.5 Reference
62 3 GBBopen Tools

:full-safety [Feature]

Purpose
Disable GBBopen compile-time optimizations.

Description

The :full-safety feature disables all compile-time optimizations, including the use of compiler
macros. Compiler macros can be disabled without disabling other compile-time optimizations with
the feature :disable-compiler-macros.

See also

defcm (page 82)
:disable-compiler-macros (page 62)

Example
Recompile a GBBopen application (and GBBopen itself) with all GBBopen optimizations disabled:

(pushnew :full-safety xfeaturesx)
(compile-module :my-app :recompile :propagate)

GBBopen 1.5 Reference
3 GBBopen Tools

63

disable-with-error-handling

Purpose
Controls whether with-error-handling is in effect.

Package :gbbopen-tools
Module :gbbopen-tools
Value type A generalized boolean
Initial value ni1

Description

[Variable]

Setting *disable-with-error-handling* to true causes with-error-handling to evaluate its forms
without any error handling in place. Any handler-form or error-form in the with-error-handling is

ignored.

Setting *disable-with-error-handling* to true is very handy for debugging an unexpected error in

a with-error-handling form.

See also
with-error-handling (page 132)

Example

Use *disable-with-error-handling* to debug a handled form:
> (with-error—-handling (/ 10 0) (printv (error-message))
H (error-message) => "Attempt to divide 10 by zero."
nil

> (setf xdisable-with-error-handlingx ’t)
t

> (with-error-handling (/ 10 0) (printv (error-message))
Error: Attempt to divide 10 by zero.
>>

64

nil)

nil)

GBBopen 1.5 Reference
3 GBBopen Tools

allow-redefinition form™ = result™

Purpose

Suppress redefinition warnings associated with processing forms when possible.

Package :gbbopen-tools (home package is :module-manager)
Module :module-manager

Arguments
form A form
results The values returned by evaluating the last form

Returns
The values returned by evaluating the last form.

See also

continue-patch (page 28)
finish-patch (page 40)
patch (page 53)
start-patch (page 57)

Example

> (defun redefined-function () "Silly.")

silly

> (defclass also-silly () ())

also-silly

> (allow-redefinition
(defun redefined-function "Even more silliness.")
(define-unit-class also-silly () ()))

also-silly

>

Note

[Macro]

This macro is defined in the :module-manager module in order to make it available as early as

possible.

At present, redefinition warnings are not suppressed on CMUCL, ECL, SBCL, and Scieneer CL.

GBBopen 1.5 Reference
3 GBBopen Tools

65

http://www.cons.org/cmucl/
http://common-lisp.net/project/ecl/
http://sbcl.sourceforge.net
http://www.scieneer.com/scl/

assq item alist = entry

Purpose

Search for entry in alist using eq as the comparison function.
Package :gbbopen-tools

Module :gbbopen-tools

Arguments

item An object

alist An association list

entry A cons that is an element of alist or nil

Returns

The first cons in alist whose car is eq to item, or nil if no such cons is found.

Description
Assq is a convenient shorthand for:

(assoc item (the list alist) :test #’'eq)
See also

memgq (page 102)

Examples
> (assq 'b "((a . 1) (b . 2) (c . 3) (b . 4)))
(b . 2)
> (assqg 'x "((a . 1) (b . 2) (c . 3) (b . 4)))
nil
>

66

[Function]

GBBopen 1.5 Reference
3 GBBopen Tools

bounded-value min number max = bounded-number

Purpose

Return a numeric value that is bounded between a minimum and maximum value.

Package :gbbopen-tools

Module :gbbopen-tools

Arguments

min A number (the minimum bound)
number A number

max A number (the maximum bound)

bounded-number A number

Returns
One of the following values:

e number if it between min and max, inclusive
e min if number is less than min

e max if number is greater than max

Examples

> (bounded-value 3 pi 4)
3.141592653589793d0

> (bounded-value 3.5 pi 4)
3.5

> (bounded-value 2 pi 3)

3
>

Note

[Function]

Declared numeric (see page 143) and pseudo probability (see page 149) versions of bounded-value
are also provided: bounded-value&, bounded-value$&, bounded-value$, bounded-value$$,

bounded-value$$$, and bounded-value%.

GBBopen 1.5 Reference
3 GBBopen Tools

67

case-using test keyform {normal-clause}* [otherwise-clause] = result™ or nil [Macro]

Purpose

Conditionally execute the forms in a clause that is selected by matching the result of evaluating
keyform according to test.

Package :gbbopen-tools
Module :gbbopen-tools

Arguments
test A symbol designating a comparison predicate (not evaluated)

keyform A form; evaluated to produce a test-key (see below)

results The values returned by evaluating the last form in the selected clause or nil

Returns

The values returned by the last form in the matching normal-clause; otherwise the values returned
by the last form in the otherwise-clause, if specified; otherwise nil.

Detailed syntax

normal-clause ::= (keys form™)
otherwise-clause ::= ({otherwise | t} form™)
Terms

test-key An object produced by evaluating keyform

keys An object or a proper list of objects. To refer to the symbols t and otherwise by themselves
as the sole key object for a normal-clause, (t) and (otherwise), respectively, must be
specified as the keys for the clause.

form A form

Description

The specified test symbol is not evaluated; however the comparison predicate that it designates must
be available during expansion of the case-using form.

The keyform is first evaluated to produce the test-key.

Each of the normal-clauses is then considered in turn. If the test-key matches that clause according
to test, then the forms in that clause are evaluated as an implicit progn, and the values it returns are
returned as the value of the case-using form.

Case-using is a generalization of Common Lisp’s case macro.

See also
ccase-using (page 71)

ecase-using (page 90)

GBBopen 1.5 Reference
68 3 GBBopen Tools

case-using

Examples
> (case-using
(n a" l)
(("b " " c L

> (case-using
("a" l)
(("b" "C"

\2

(case-using
("a" 1)
(("b" "c"

nil

> (case-using

("a" 1)

(("p" "

string= "a"
"d") 2))
string= "d"
"d") 2))
string= "C"
"d") 2))
string= "C"

"d") 2)

(otherwise -1))

-1

> (case-using
("a" l)
(("b" "c"

equalp "C"

"d") 2)

(otherwise -1))

GBBopen 1.5 Reference

3 GBBopen Tools

case-using

69

case-using-failure [Condition]

Package :gbbopen-tools
Module :gbbopen-tools

Description
The condition case-using-failure is a subclass of t ype—error.

See also

case-using (page 68)
ccase-using (page 71)
ecase-using (page 90)

GBBopen 1.5 Reference
70 3 GBBopen Tools

ccase-using test keyplace {clause}” = result™ [Macro]

Purpose

Conditionally execute the forms in a clause that is selected by matching the result of evaluating
keyplace according to test, generating a correctable error if no clause is selected.

Package :gbbopen-tools
Module :gbbopen-tools

Arguments
test A symbol designating a comparison predicate (not evaluated)

keyplace A form; evaluated to produce a test-key and possibly also used later as a place if no keys
match (see below)

results The values returned by evaluating the last form in the selected clause

Returns
The values returned by the last form in the selected clause.

Errors
No clause was selected.

Detailed syntax
clause = (keys form™)

Terms

test-key An object produced by evaluating keyplace
keys An object or a proper list of objects.

form A form

Description

The specified test symbol is not evaluated; however the comparison predicate that it designates must
be available during expansion of the case-using form.

The keyplace is first evaluated to produce the test-key.

Each of the clauses is then considered in turn. If the test-key matches that clause according to test,
then the forms in that clause are evaluated as an implicit progn, and the values it returns are
returned as the value of the ccase-using form.

If no clause is selected, a correctable error of type case-using-failure (a subclass of type-error)
is signaled. The offending datum is the test-key and the expected type is type equivalent to

(member (union keys :test test). Common Lisp’s store-value restart can be used to correct the
error.

Ccase-using is a generalization of Common Lisp’s ccase macro.

GBBopen 1.5 Reference
3 GBBopen Tools 71

See also
case-using-failure (page 70)
case-using (page 68)
ecase-using (page 90)
Examples
> (defparameter *xx "a")
* X *

> (ccase—using string= *xx*
("a" l)
(("b" "cll "d") 2))

1

> (setf xxx "d")

"d"

> (ccase-using string= *xx*
("all l)
(("b" "C" "d") 2))

2

> (setf xxx "C")

"C"

> (ccase-using string= *xx*

("a" 1)
(("b" "C" "d") 2))
Error: "C" fell through an ecase-using string= form;
the valid keys are "a", "b", "c", and "d".

Restart actions (select using :c n):
0: Supply a new value for xxx*.
>> :c 0

Enter a form to evaluate as the new value for xxx: "a"

*xX+ 1is now "a"
1
>

ccase-using

72

ccase-using

GBBopen 1.5 Reference
3 GBBopen Tools

compiler-macroexpand form soptional env = expansion, expanded-p

Purpose
Expand form until it is no longer a compiler-macro form.

Package :gbbopen-tools
Module :gbbopen-tools

Arguments

form A form

env An environment object (default is nil)
expansion A form

expanded-p A generalized boolean

Returns
Two values:

[Function]

e if form is a compiler-macro form, then return the repeatedly expanded compiler-macro form and

true
e otherwise, return the given form and nil

Description

Form is expanded repeatedly by calling compiler-macroexpand-1 until it is no longer a
compiler-macro form.

See also

compiler-macroexpand-1 (page 74)

Examples
> (compiler-macroexpand ’ (ensure-list x))
(let ((#:97105 x)) (if (listp #:97105) #:97105 (list #:97105)))
t

> (compiler-macroexpand ’ (cons x nil))
(cons x nil)

nil

>

GBBopen 1.5 Reference
3 GBBopen Tools

73

compiler-macroexpand-1 form soptional env = expansion, expanded-p [Function]

Purpose
Expand form if it is a compiler-macro form.

Package :gbbopen-tools
Module :gbbopen-tools

Arguments

form A form

env An environment object (default is nil)
expansion A form

expanded-p A generalized boolean

Returns
Two values:

e if form is a compiler-macro form, then return the compiler-macro expansion of form and true

e otherwise, return the given form and nil

Description

If form is a compiler-macro form, then compiler-macroexpand-1 expands the compiler-macro-form
call once.

See also

compiler-macroexpand (page 73)

Examples
> (compiler-macroexpand-1 ' (ensure-list x))
(let ((#:g97105 x)) (if (listp #:97105) #:g7105 (list #:97105)))
t

> (compiler-macroexpand-1 ' (cons x nil))
(cons x nil)

nil

>

GBBopen 1.5 Reference
74 3 GBBopen Tools

counted-delete item sequence skey from-end test test-not start end count key [Function]
= result-sequence, count

Purpose
A version of delete that returns the number of items that were deleted as a second value.

Packdge :gbbopen-tools
Module :gbbopen-tools

Arguments

item An object

sequence A proper sequence

from-end A generalized boolean (default is nil)

test A function designator specifying a function object of two arguments that returns a
generalized boolean (default is #’ eql)

test-not A function designator specifying a function object of two arguments that returns a
generalized boolean (use of : test-not is deprecated)

start Starting index into sequence (default is 0)

end Ending index into sequence (default is ni1, meaning end of sequence)

count An integer or nil (defaultis nil)

key A function designator specifying a function object of one argument, or nil (default is nil)

result-sequence A sequence

Returns

Two values:
e the sequence from which the elements that satisfy the test have been removed
e the number of items that have been removed, or nil

Description

Returns a sequence from which elements that satisfy the test have been deleted. The supplied
sequence may be modified in constructing the result; however, modification of the supplied sequence
itself is not guaranteed.

Specifying a from-end value of true matters only when the count is provided, and in that case only
the rightmost count elements satisfying the test are deleted.

See also
atomic-delete (page 230)
delq (page 80)
delq-one (page 81)
Examples
> (counted-delete "a "(a b ¢c a b ¢))
(b ¢ b c)
2
> (counted-delete #\a "abcabc")

GBBopen 1.5 Reference
3 GBBopen Tools 75

counted-delete

"bcbc"

2

> (counted-delete 'z "(a b c a b ¢))

(a b caboc)

0

> (counted-delete #\a "abcabc" :from-end 't :count 1)
"abcbc"

1

>

Note
This is what delete should have been (and was on the Lisp Machines).

counted-delete

GBBopen 1.5 Reference
76 3 GBBopen Tools

decf-after place soptional decrement = original-value [Macrol]

Purpose
Decrement the value of place, returning the original value of place.

Package :gbbopen-tools
Module :gbbopen-tools

Arguments

place A form which is suitable for use as a generalized reference
decrement A number (default is 1)

original-value A number

Returns
The original value of place.

See also
incf-after (page 94)

Examples

> (defparameter »*xx 4)
* X *

(decf-after *x*)
* X *

* X *

>
4
>
3
> (decf-after *x* 3)
3
>
0
>

Note

Declared numeric (see page 143) and pseudo probability (see page 149) versions of decf-after are also
provided: decf-after&, decf-after$&, decf-after$, decf-after$$, decf-after$$$, and decf-after%.

GBBopen 1.5 Reference
3 GBBopen Tools 77

decf/delete-acons item decrement place skey key test test-not = new-place-value [Macrol]

Purpose
Decrement by decrement the value associated with item in an association list stored in place,
deleting the cons associated with item if the value becomes zero.

Packqge :gbbopen-tools

Module :gbbopen-tools

Arguments

item An object

decrement A number

place A form which is suitable for use as a generalized reference

key A function designator specifying a function object of one argument, or ni1 (default
isnil)

test A function designator specifying a function object of two arguments that returns a
generalized boolean (default is #’ eql)

test-not A function designator specifying a function object of two arguments that returns a

generalized boolean (use of : test—-not is deprecated)

new-place-value An association list

Returns
An association list (the new value of place).

Errors
Item item is not present in the association list stored in place.

Description
This is the inverse of pushnew/incf-acons.

See also

pushnew/incf-acons (page 113)

Examples

> (setf alist " ((x . 2)(y . 2))
((x . 2)(y . 2))

> (decf/delete-acons "x 1 alist)
((x . Dy . 2))

> (decf/delete—acons ’'x 1 alist)
(y . 2))

> (decf/delete-acons 'y 2 alist)
nil

>

GBBopen 1.5 Reference
78 3 GBBopen Tools

decf/delete-acons

Note

Declared numeric (see page 143) and pseudo probability (see page 149) versions of decf/delete-acons
are also provided: decf&/delete-acons, decf$&/delete-acons, decf$/delete-acons,
decf$$/delete-acons, decf$$$/delete-acons, and decf%/delete-acons,

decf/delete-acons

GBBopen 1.5 Reference
3 GBBopen Tools 79

delq item list = list

Purpose

[Function]

Destructively delete all item elements from list using eq as the comparison function.

Package :gbbopen-tools

Module :gbbopen-tools

Arguments
item An object
list A proper list

Returns

A list from which all item elements have been deleted.

Description

Delq is a convenient shorthand for:

(delete item (the list 1ist)

ttest #'eq)

As is the case with delete, delq may modify the top-level structure of list in constructing the

result-list.

See also
atomic-delete (page
counted-delete (page
delg-one (page
Examples
> (delg 'b "(a b
(a c)
> (delqg "x "(a b
(a b c b)
>
80

230)
75)
81)

GBBopen 1.5 Reference
3 GBBopen Tools

delq-one item list = list [Function]

Purpose
Destructively delete the first occurrence of item from list using eq as the comparison function.

Package :gbbopen-tools
Module :gbbopen-tools

Arguments
item An object
list A proper list

Returns
A list from which the first item element has been deleted.

Description
Delq-one is a convenient and efficient shorthand for:

(delete item (the list 1ist) :test #’'eq :count 1)

As is the case with delete, delq-one may modify the top-level structure of list in constructing the
result-list.

See also

atomic-delete (page 230)
counted-delete (page 75)
delq (page 80)

Examples
> (delg-one '"b "(a b c b))
(a c b)
> (delg-one

(a b c b)

>

4

x '"(a b c b))

GBBopen 1.5 Reference
3 GBBopen Tools

81

defcm name lambda-list [[declaration™ | documentation]] form™ = name [Macro]

Purpose
Define a read-time conditional compiler macro.

Package :gbbopen-tools

Module :gbbopen-tools

Arguments

name A non-nil, non-keyword symbol that names a function or macro
lambda-list A lambda-list

declaration A declare expression (not evaluated)

documentation A documentation string (not evaluated)

form A form

Returns

The supplied name.

Description
Defcm is a read-time conditional version of Common Lisp’s define-compiler-macro. As with
define-compiler-macro:

e The expander function is installed as a compiler macro function for name.

e The ¢whole argument is bound to the form argument that is passed to defcm. The remaining
lambda-list parameters are specified as if this form contained the function name in the car and
the actual arguments in the cdr. However, if the car of the actual form is the symbol funcall,
then the destructuring of the arguments is actually performed using its cddr instead.

e Documentation is attached as a documentation string to name (as kind compiler-macro) and
to the compiler macro function.

e A compiler macro can decline to provide an expansion merely by returning the original form
(which can be obtained by using swhole).

A compiler macro is not defined if the feature :disable-compiler-macros or the feature :full-safety
is present when the expander function is executed on a form.

See also
:disable-compiler-macros (page 62)
:full-safety (page 63)
Example

Here is the compiler macro defined for ensure-list:

> (defcm ensure-list (x)
(with-once-only-bindings (x)
‘(if (listp ,x) ,x (list ,x))))
ensure-list
>

GBBopen 1.5 Reference
82 3 GBBopen Tools

define-class class-name ({superclass-name}*) ({slot-specifier}”) {class-option}*

= new-class

Purpose

Extended macro for defining or redefining a class.

Package :gbbopen-tools

Module :gbbopen-tools

Arguments
class-name

A non-nil, non-keyword symbol that names the class

[Macro]

superclass-name A non-nil, non-keyword symbol that specifies a direct superclass of the class

slot-specifiers
class-options
new-class

Returns

class-name

See below

See below

A new or modified class object

The newly defined or modified class object.

Detailed syntax
slot-specifier ::= slot-name |

slot-option :

(slot-name [[slot-option]])
accessor reader-function-name}” |

:allocation allocation-type} |
:documentation string} |

:initform form} |

: reader reader-function-name}” |
:type type-specifier} |

:writer writer-function-name}

class-option ::=

(
(
(
(
(
(:
(
(
(
(
(

={:
{
{
{:initarg initarg-name}” |
{
{
{
{

:default-initargs . initarg-list) |
:documentation string) |

:export-accessors boolean) |
:export-class—name boolean) |
:export-slot—names slots-specifier) |
generate-accessors slots-specifier) |
:generate-accessors-format {:prefix | :suffix} |
:generate-accessors-prefix {string | symbol}) |
:generate-accessors-suffix {string | symbol}) |
:generate-initargs slots-specifier) |
:metaclass class-name)

slots-specifier := nil | t | included-slot-name™ |

Terms

{t :exclude excluded-slot-name™}

class-name A non-nil, non-keyword symbol that names a class

GBBopen 1.5 Reference
3 GBBopen Tools

83

define-class

documentation A documentation string
initarg-list An initialization argument list
slot-name A non-nil, non-keyword symbol

Description
Each superclass-name argument specifies a direct superclass of the new class. If the superclass list is
empty, then the direct superclass defaults to the single class standard-object.

The :metaclass class option, if specified, must be a subclass of standard-class. The default
metaclass value is standard-class.

See also
define-unit-class (page 330)
make-instance (page 364)

with-generate-accessors-format (page 136)

Examples
Define a class, rectangle, generating “—of” slot accessors:

> (define-class rectangle (point)
(length width))

#<standard-class rectangle>

>

Define a class, foo, generating “class-name . slot-name” slot accessors:

> (define-class foo ()
((slot :initform ’:uninitialized))
(:generate-accessors—format :prefix))
#<standard-class foo>
>

define-class

GBBopen 1.5 Reference
84 3 GBBopen Tools

do-until form test-form

Purpose

Evaluates form and then test-form repeatedly, as long as test-form evaluates tonil.

Package :gbbopen-tools
Module :gbbopen-tools

Arguments
form A form
test-form A form

See also
do-while (page 86)

until (page 130)
while (page 131)

Examples
> (let ((i 0))
(do—until (print 1i)

(> (incf 1) 3)))

1

2

3

nil

> (let ((i 10))
(do—until (print 1i)

(> (incf i) 3)))

10
nil

GBBopen 1.5 Reference
3 GBBopen Tools

[Macro]

85

do-while form test-form

Purpose

[Macro]

Evaluates form and then test-form repeatedly, until test-form evaluates to nil.

Package :gbbopen-tools
Module :gbbopen-tools

Arguments
form A form
test-form A form

See also
do-until (page 85)

until (page 130)
while (page 131)

Examples

> (let ((1 0))
(do-while (print

-

(<= (incf i) 3)))

1

2

3

nil

> (let ((i 10))

(do—while (print 1i)

(<= (incf i) 3)))

10

nil

>

86

GBBopen 1.5 Reference
3 GBBopen Tools

dosequence (var sequence-form [result-form]) declaration™ {tag | form}* = result™or nil [Macro]

Purpose
A generalized dolist-style iterator for any sequence.

Package :gbbopen-tools

Module :gbbopen-tools

Arguments

var A variable symbol

sequence-form A form that evaluates to a sequence

result-form A form

declarations A declare expression (not evaluated)

tag A go tag (not evaluated)

form A form

results The values returned by evaluating the last form
Returns

If a return or return-from form is executed, then the values passed from that form are returned;
otherwise, the values returned by evaluating the result-form are returned, or nil if there is no
result-form.

Description

The body of dosequence is like a tagbody. Dosequence evaluates sequence-form, which should
produce a sequence. It then executes the body once for each element in the sequence, with var bound
to the element.

The scope of the binding of var does not include the sequence-form, but it does include the
result-form.

See also
dosublists (page 88)

Examples

> (dosequence (elt #(1 2 3)) (print elt))
1

2

3

nil

> (dosequence (char "abc") (print char))
#\a

#\b

#\c

nil

>

GBBopen 1.5 Reference
3 GBBopen Tools 87

dosublists (var list-form [result-form]) declaration™ {tag | form}* = result*or nil [Macro]

Purpose
A dolist-style iterator for successive sublists of a list.

Package :gbbopen-tools

Module :gbbopen-tools

Arguments
var A variable symbol
list-form A form that evaluates to a proper list

result-form A form
declarations A declare expression (not evaluated)

tag A go tag (not evaluated)

form A form

results The values returned by evaluating the last form
Returns

If a return or return-from form is executed, then the values passed from that form are returned;
otherwise, the values returned by evaluating the result-form are returned, or nil if there is no
result-form.

Description

The body of dosublists is like a tagbody. Dosublists evaluates list-form, which should produce a
proper list. It then executes the body once for each successive sublist in the list, with var bound to the
sublist.

The scope of the binding of var does not include the list-form, but it does include the result-form.

See also
dosequence (page 87)

Examples

> (dosublists (sublist ' (1 2 3)) (print sublist))
(1 2 3)

(2 3)

(3)

nil

> (dosublists (sublist ’ (1 2 3) (print "Done")) (print sublist))
(1 2 3)

(2 3)

(3)

"Done"

>

GBBopen 1.5 Reference
88 3 GBBopen Tools

dotted-length list = n

Purpose

Return the length of a proper list or dotted list.

Package :gbbopen-tools
Module :gbbopen-tools

Arguments
list A proper list or a dotted list
n An integer

Returns
The length of list.

Examples

> (dotted-length ' (a b))
2
> (dotted-length '(a b . c))
2
>

Note
This function will not work on a circular list.

GBBopen 1.5 Reference
3 GBBopen Tools

[Function]

89

ecase-using test keyform {clause}™ = result™ [Macrol]

Purpose

Conditionally execute the forms in a clause that is selected by matching the result of evaluating
keyform according to test, generating an error if no clause is selected.

Packqge :gbbopen-tools
Module :gbbopen-tools

Arguments

test A symbol designating a comparison predicate (not evaluated)

keyform A form; evaluated to produce a test-key (see below)

results The values returned by evaluating the last form in the selected clause

Returns
The values returned by the last form in the selected clause.

Errors
No clause was selected.

Detailed syntax
clause ::= (keys form™)

Terms

test-key An object produced by evaluating keyform
keys An object or a proper list of objects.
form A form

Description

The specified test symbol is not evaluated; however the comparison predicate that it designates must
be available during expansion of the case-using form.

The keyform is first evaluated to produce the test-key.

Each of the clauses is then considered in turn. If the test-key matches that clause according to test,
then the forms in that clause are evaluated as an implicit progn, and the values it returns are
returned as the value of the ecase-using form.

If no clause is selected, a non-correctable error of type case-using-failure (a subclass of
type—-error) is signaled. The offending datum is the test-key and the expected type is type
equivalent to (member (union keys :test test).

Ecase-using is a generalization of Common Lisp’s ecase macro.

See also

case-using-failure (page 70)
case-using (page 68)
ccase-using (page 71)

GBBopen 1.5 Reference
90 3 GBBopen Tools

ecase-using

Examples

> (ecase-using string= "a"
("a" 1)
(("b" "C" "d") 2))

1

> (ecase-using string= "d"
("a" 1)
(("b" "c"™ "d") 2))

2

> (ecase-using string= "C"
("a" 1)

(("b" "C" "d") 2))
Error: "C" fell through an ecase-using string= form;
the valid keys are "a", "b", "c", and "d".
>>

ecase-using

GBBopen 1.5 Reference
3 GBBopen Tools 91

ensure-finalized-class class = finalized-class
Purpose

Finalizes class if it is not already finalized.
Package :gbbopen-tools

Module :gbbopen-tools

Arguments
class A class designator
finalized-class A class object

Returns
The finalized class.

Example

> (ensure-finalized-class (find-class

#<standard-unit-class hyp>
>

Note

This function is compiled in-line for top performance.

92

[Function]

GBBopen 1.5 Reference
3 GBBopen Tools

ensure-list object = list [Function]

Purpose
Construct a list containing an object, if the object is not already a list.

Package :gbbopen-tools
Module :gbbopen-tools

Arguments
object An object
list Alist

Returns
The object if it is a list or, if object is an atom, a newly consed list containing object as its sole element.

Examples
> (ensure-list ’x)
(x)
> (ensure-list '’ (x))
(x)
> (ensure—-list nil)
nil
>

Note
This function is compiled in-line for top performance.

GBBopen 1.5 Reference
3 GBBopen Tools 93

incf-after place soptional increment = original-value [Macro]

Purpose
Increment the value of place, returning the original value of place.

Package :gbbopen-tools

Module :gbbopen-tools

Arguments
place A form which is suitable for use as a generalized reference
increment A number (default is 1)

original-value A number

Returns
The original value of place.

See also
decf-after (page 77)

Examples

> (defparameter *xx 0)
* X *

(incf-after =*x%*)
* X *

>
0
>
1
> (incf-after *x* 3)
1
> xXx*

4

>

Note

Declared numeric (see page 143) and pseudo probability (see page 149) versions of incf-after are also
provided: incf-after&, incf-after$&, incf-after$, incf-after$$, incf-after$$$, and incf-after%.

GBBopen 1.5 Reference
94 3 GBBopen Tools

list-length-1-p list = boolean [Function]

Purpose
Fast length = 1 test of a list.

Package :gbbopen-tools
Module :gbbopen-tools

Arguments
list A proper list or a dotted list
boolean A generalized boolean

Returns
True if list has length 1; nil otherwise.

See also

list-length> (page 97)
list-length>1 (page 98)
list-length>2 (page 99)
list-length-2-p (page 96)

Examples
> (list-length-1-p '’ (a))
t
> (list-length-1-p ' (a b))
nil
> (list-length-1-p nil)
nil
> (list-length-1-p ' (a . b))
nil

>

GBBopen 1.5 Reference
3 GBBopen Tools 95

list-length-2-p list = boolean

Purpose
Fast length = 2 test of a list.

Package :gbbopen-tools
Module :gbbopen-tools

Arguments
list A proper list or a dotted list
boolean A generalized boolean

Returns
True if list has length 2; nil otherwise.

See also

list-length-1-p (page 95)
list-length> (page 97)
list-length>1 (page 98)
list-length>2 (page 99)

Examples
> (list-length-2-p ' (a b))
t
> (list-length-2-p '(a b c))
nil
> (list-length-2-p ' (a))
nil
> (list-length-2-p "(a b . c))
nil
>

96

[Function]

GBBopen 1.5 Reference
3 GBBopen Tools

list-length> n list = boolean

Purpose
Fast length > n test of a list.
Package :gbbopen-tools

Module :gbbopen-tools

Arguments

n A non-negative fixnum

list A proper list or a dotted list
boolean A generalized boolean

Returns

True if list has length > n; nil otherwise.

See also

list-length> (page 97)
list-length-1-p (page 95)
list-length-2-p (page 96)

Examples
> (list-length> 1 ' (a b))
t
> (list-length> 2 ' (a b))
nil
> (list-length> 1 ' (a))
nil
> (list-length> 1 '(a . b))
nil
> (list-length> 1 "(a b . ¢))
t
>

GBBopen 1.5 Reference
3 GBBopen Tools

[Function]

97

list-length>1 list = boolean [Function]

Purpose
Fast length > 1 test of a list.

Package :gbbopen-tools
Module :gbbopen-tools

Arguments
list A proper list or a dotted list
boolean A generalized boolean

Returns
True if list has length > 1; nil otherwise.

See also

list-length> (page 97)
list-length-1-p (page 95)
list-length-2-p (page 96)

Examples
> (list-length>1 ' (a b))
t
> (list-length>1 ' (a))
nil
> (list-length>1 ' (a . b))
nil
> (list-length>1 ' (a b . c¢))
t
>

GBBopen 1.5 Reference
98 3 GBBopen Tools

list-length>2 list = boolean

Purpose

Fast length > 2 test of a list.

Package :gbbopen

-tools

Module :gbbopen-tools

Arguments

list A proper list or a dotted list

boolean A generalized boolean

Returns

True if list has length > 2; nil otherwise.

See also

list-length> (page
list-length>1 (page
list-length-1-p (page
list-length-2-p (page

Examples
> (list-length>2
t
> (list-length>2
nil
> (list-length>2
nil
> (list-length>2
t
>

GBBopen 1.5 Reference
3 GBBopen Tools

97)
98)
95)
96)

[Function]

99

make-hash-values-vector hash-table = vector

Purpose

Return a vector containing all values in hash-table.

Package :gbbopen-tools
Module :gbbopen-tools

Arguments
hash-table A hash table
vector A vector

Returns
The newly allocated vector.

Examples

> (defparameter xhtx (make—-hash-table))

*ht *
> (make—-hash-values-vector xhtx)

#0)

> (setf (gethash ’"a xhtx) 1)
1
> (setf (gethash 'b xhtx) 2)
2
> (setf (gethash ’'c xhtx) 3)
3
> (make—-hash-values-vector xhtx)
#(3 1 2)
>
100

[Function]

GBBopen 1.5 Reference
3 GBBopen Tools

make-keyword x = keyword

Purpose

Return a keyword symbol as specified by x.

Package :gbbopen-tools
Module :gbbopen-tools

Arguments
X A string, symbol, or character
keyword A keyword symbol

Returns
The keyword symbol.

Examples

> (make-keyword ’gbbopen)
:gbbopen

> (make-keyword "GBBOPEN")
:gbbopen

> (make-keyword #\X)

:X

>

Note

This function is compiled in-line for top performance.

GBBopen 1.5 Reference
3 GBBopen Tools

[Function]

101

memgq item list = tail

Purpose

Search for item in list using eq as the comparison function.

Package :gbbopen-tools
Module :gbbopen-tools

Arguments

item An object
list A proper list
tail A proper list

Returns

The tail of list beginning with item if item is present; nil otherwise.

Description
Memgq is a convenient shorthand for:
(member item (the list 1ist) :test #’'eq)
See also
counted-delete (page 75)
assq (page 66)
delq (page 80)
delq-one (page 81)
Examples
> (memgq "b " (a b c b))
(b ¢ b)
> (memgq '"x " (a b c b))
nil
>
102

[Function]

GBBopen 1.5 Reference
3 GBBopen Tools

multiple-value-setf (place*) form = primary-value [Macro]

Purpose
Assign values to places.

Package :gbbopen-tools

Module :gbbopen-tools

Arguments
place A form which is suitable for use as a generalized reference or nil
form A form

primary-value The first value returned by evaluating form

Returns
The primary value returned by form.

Description

The form is evaluated, and each place is assigned to the corresponding value returned by form. If ni1
is used one or more places, no assignment is made to the nil “place,” but the corresponding value is
consumed (ignored). If there are more places than values returned, nil is assigned to the extra
places. If there are more values than places, the extra values are discarded.

Examples

> (setf *x* (cons 0 0))
(0 . 0)
(multiple-value-setf ((car *x*) (cdr #*xx)) (values 1 2 3))

1. 2)
(multiple-value-setf (nil nil (cdr =*x%)) (values -1 -2 -3))
-1
> kX%
(1 . =3)
> (multiple-value-setf ((car =*xx) (cdr xxx)) 100)
100
> *X*
(100)
> (multiple-value-setf ((car *x%) (cdr #*xx*)) nil)
nil

>
1
> xX*
(
>

> *X*
(nil)
>

GBBopen 1.5 Reference
3 GBBopen Tools 103

nsorted-insert item list soptional predicate key = result-list [Function]

Purpose
Positionally insert item in list based on predicate and key functions.

Package :gbbopen-tools

Module :gbbopen-tools

Arguments
item An object
list A proper list

predicate A function designator specifying a function object of two arguments that returns a
generalized boolean (default is #’ <)

key A function designator specifying a function object of one argument, or ni1 (default is nil)
result-list A proper list

Returns
A list into which item has been inserted.

Description

The supplied list may be modified in constructing the result; however, modification of the supplied list
itself is not guaranteed.

Example

> (nsorted-insert 5 (2 4 6 8))
(2 4 5 6 8)
>

GBBopen 1.5 Reference
104 3 GBBopen Tools

object-address object soptional hex-string-p = address

Purpose
Return the internal address of object.
Package :gbbopen-tools

Module :gbbopen-tools

Arguments

object An object

hex-string-p A generalized boolean (default is nil)
address An integer or a string

Returns

[Function]

The integer internal address of object or a string containing the hexadecimal representation of the

address if hex-string-p is true.

Description
Object-address can be useful with printv.

See also
printv (page 108)

Examples
> (object-address *packagex)
1907568474
> (object-address xpackagex 't)
"71B32F5A"
>

GBBopen 1.5 Reference
3 GBBopen Tools

105

print-instance-slot-value instance slot-name stream skey function no-space [Generic Function]

Purpose
Print the value of the slot-name slot in instance or [Unbound], if the slot is unbound.

Method signatures
print-instance-slot-value (instance standard-gbbopen-instance) slot-name stream

Packqge :gbbopen-tools
Module :gbbopen-tools

Arguments

instance A standard-gbbopen-instance object

slot-name A non-nil, non-keyword symbol

stream A stream

function A function designator specifying a function object of one argument
no-space A generalized boolean (default is ni1)

Description

Unless no-space is true, a space character is printed to stream. Then the slot value in instance
specified by slot-name is printed to stream, unless the slot is unbound, in which case [Unbound] is
printed to stream.

If the slot is bound and function is specifed, function is called with the slot value and the result is
printed to stream rather than the slot value.

See also

print-instance-slots (page 107)
standard-gbbopen-instance (page 126)

Example
Extend the print-object printing for hyp instances to include location and belief slot values:
(defmethod print-instance-slots ((obj hyp) stream)
(call-next-method)

(print-instance-slot-value obj ’location stream)
(print—-instance-slot-value obj ’'belief stream))

GBBopen 1.5 Reference
106 3 GBBopen Tools

print-instance-slots instance stream [Generic Function]

Purpose

Extend standard-gbbopen-instance printing performed by print-object to include additional
slot-value information.

Method signatures
print-instance-slots (instance ksa) stream

print-instance-slots (instance 1ink/nonlink-slot—-event) stream
print-instance-slots (instance multiple—instances-event) stream

print-instance-slots (instance single-instance-event) stream

(

(

(
print-instance-slots (instance space-instance-event) stream
print-instance-slots (instance standard-event-instance) stream
print-instance-slots (instance standard—-gbbopen—instance) stream
print-instance-slots (instance standard-unit—-instance) stream

print-instance-slots :after (instance standard-unit-instance) stream
Package :gbbopen-tools
Module :gbbopen-tools

Arguments
instance A standard-gbbopen-instance object
stream A stream

See also

print-instance-slot-value (page 106)
standard-gbbopen-instance (page 126)

Examples
Extend the print-object printing for hyp instances to include location and belief slot values:

(defmethod print-instance-slots ((obj hyp) stream)
(call-next-method)
(when (and (slot-boundp obj ’location)
(slot-boundp obj "belief))
(format stream "
(slot-value obj "location)
(slot-value obj ’'belief))))

~8 NS"

or if displaying [Unbound] for unbound slots is desired:

(defmethod print-instance-slots ((obj hyp) stream)
(call-next-method)
(print-instance-slot-value obj ’'location stream)
(print-instance-slot-value obj ’'belief stream))

GBBopen 1.5 Reference
3 GBBopen Tools 107

printv form™ = result™ [Macro]

Purpose
Assist debugging by printing forms and the results of evaluating them to xt race—output *.

Package :gbbopen-tools (home package is :module-manager)
Module :module-manager

Arguments
forms An implicit progn of forms to be evaluated and printed
results The values returned by evaluating the last form that is not the keyword symbol : hr

Returns
The values returned by evaluating the last form that is not the keyword symbol : hr

Description
The following is performed for each form in forms:

e if the form is the keyword symbol :hr, a dashed separator line printed to *t race—output*

e if the form is a string (before evaluation), it is treated as a label and printed to
t race—output without enclosing double-quote characters

e if the form is a self-evaluating object, it is printed to »trace—output *

e otherwise, the form is printed to »t race—output *, then the form is evaluated and the result
values are printed to *trace—-output*.

See also
printvot (page 201)

Examples
> (printv :hr "PRINTV example" (list 1 2) (list 3 4) '""A quoted string"
"Return no values:" (values)
"Return multiple values:" (values 5 6) :hr)

i

;7 PRINTV example

P (list 1 2) => (1 2)

B (list 3 4) => (3 4)

;7 Return no values:

HH (values) => [returned 0 values]

P ""A quoted string" => "A quoted string"
;; Return multiple values:

i (values 5 6) => 5; 6

2 2
5
6
> (printv xpackagex (object-address xpackagex 't))

;i xpackagex => #<The GBBOPEN-USER package>

HY (object—-address xpackagex 't) => "T71b32f5a"

GBBopen 1.5 Reference
108 3 GBBopen Tools

printv

"71b32£5a"
>

Note

This macro is defined in the :module-manager module in order to make it available as early as
possible.

printv

GBBopen 1.5 Reference
3 GBBopen Tools 109

push-acons item value place = new-place-value [Macrol]

Purpose
Add a new item value cons to an association list stored in place.

Package :gbbopen-tools

Module :gbbopen-tools

Arguments

item An object

value An object

place A form which is suitable for use as a generalized reference

new-place-value An association list

Returns

An association list (the new value of place).
See also

pushnew-acons (page 111)

pushnew/incf-acons (page 113)

Examples

> (setf alist nil)

nil

> (push-acons ’"x 1 alist)
((x . 1))

> (push-acons 'y 2 alist)
((y - 2) (x . 1))

> alist

((y - 2) (x . 1))
>

GBBopen 1.5 Reference
110 3 GBBopen Tools

pushnew-acons item value place skey key test test-not = new-place-value [Macro]

Purpose
Replace the value associated with item in an association list stored in place or add a new
(item . wvalue) cons to the association list if there is no existing association for item.

Packqge :gbbopen-tools

Module :gbbopen-tools

Arguments

item An object

value An object

place A form which is suitable for use as a generalized reference

key A function designator specifying a function object of one argument, or ni1 (default
isnil)

test A function designator specifying a function object of two arguments that returns a
generalized boolean (default is #’ eql)

test-not A function designator specifying a function object of two arguments that returns a

generalized boolean (use of :test-not is deprecated)
new-place-value An association list

Returns

An association list (the new value of place).
See also

push-acons (page 110)

pushnew/incf-acons (page 113)

Examples
> (setf alist nil)
nil
> (pushnew-acons ’'x 1 alist)

((x . 1))
> (pushnew—-acons 'y 2 alist)

(y - 2) (x . 1))
> (pushnew—-acons 'x -1 alist)

((y . 2) (x . -1))
> alist
((y - 2) (x . -1))

>

GBBopen 1.5 Reference
3 GBBopen Tools 111

pushnew-elements list place skey key test test-not = new-place-value [Macro]

Purpose
Pushes new elements in list onto the list stored in place.

Package :gbbopen-tools

Module :gbbopen-tools

Arguments

list A proper list

place A form which is suitable for use as a generalized reference

key A function designator specifying a function object of one argument, or ni1 (default
isnil)

test A function designator specifying a function object of two arguments that returns a
generalized boolean (default is #’ eql)

test-not A function designator specifying a function object of two arguments that returns a

generalized boolean (use of : test—not is deprecated)
new-place-value An association list

Returns
The new value of place.

Description

Each element in list is checked to see if it is already present in the proper list stored in place. If the
element is not already present, it is prepended to the list stored in place.

Examples

> (setf x ' (1 3 5))

(1L 3 5)

> (pushnew-elements ' (1 2 3) x)
(2 1 3 5)

> (pushnew—-elements ’ (3 4 5) x)
(4 2 1 3 5)

>

GBBopen 1.5 Reference
112 3 GBBopen Tools

pushnew/incf-acons item increment place skey key test test-not = new-place-value [Macrol]

Purpose
Increment by increment the value associated with item in an association list stored in place or add a
new (item . increment) cons to the association list if there is no existing association for item.

Package :gbbopen-tools

Module :gbbopen-tools

Arguments

item An object

increment A number

place A form which is suitable for use as a generalized reference

key A function designator specifying a function object of one argument, or ni1 (default
isnil)

test A function designator specifying a function object of two arguments that returns a
generalized boolean (default is #’ eql)

test-not A function designator specifying a function object of two arguments that returns a

generalized boolean (use of :test-not is deprecated)

new-place-value An association list

Returns
An association list (the new value of place).

See also

push-acons (page 110)
pushnew-acons (page 111)
decf/delete-acons (page 78)

Examples
> (setf alist nil)
nil
> (pushnew/incf-acons ’'x 1 alist)
((x . 1))
> (pushnew/incf-acons ’'x 1 alist)
((x . 2))
> (pushnew/incf-acons 'y 2 alist)
(ly . 2) (x . 2))
> (pushnew/incf-acons ’'x -1 alist)
((y - 2) (x . 1))
> alist
((y 2) (% 1))
>

GBBopen 1.5 Reference
3 GBBopen Tools 113

pushnew/incf-acons

Note

Declared numeric (see page 143) and pseudo probability (see page 149) versions of
pushnew/incf-acons are also provided: pushnew/incf&-acons, pushnew/incf$&-acons,
pushnew/incf$-acons, pushnew/incf$$-acons, pushnew/incf$$$-acons, and
pushnew/incf%-acons.

pushnew/incf-acons

GBBopen 1.5 Reference
114 3 GBBopen Tools

remove-properties plist indicators = new-plist [Function]

Purpose
Non-destructively removes properties from a property list.

Package :gbbopen-tools
Module :gbbopen-tools

Arguments

plist A property list
indicators A list of objects
new-plist A property list

Returns
The new property list.

Description
All instances of each specified property in the property list are removed.

See also
remove-property (page 116)

Examples
> (remove-properties ' (:x 1 :y 2 :z 3) ' (:v))
(:x 1 :2 3)
> (remove-properties ' (:x 1 :y 2 :x 11 :y 12 :z =-1) " (:2 :vy))
(:x 1 :x 11)
> (remove-properties ' (:x 1 :y 2 :z 3) ' (:missing))
(:x 1 :y 2 :z 3)
>

GBBopen 1.5 Reference
3 GBBopen Tools 115

remove-property plist indicator = new-plist [Function]

Purpose
Non-destructively remove a property from a property list.

Package :gbbopen-tools
Module :gbbopen-tools

Arguments

plist A property list
indicator An object
new-plist A property list

Returns
The new property list.

Description
If there is more than one instance of property in the property list, only the first one is removed.

See also

remove-properties (page 115)

Examples
> (remove-property ' (:x 1 :y 2 :z 3) :vy)
(:x 1 :2 3)
> (remove-property ’ (:x 1 :yv 2 :x 11 :y 12) :vy)
(:x 1 :x 11 :y 12)
> (remove-property ' (:x 1 :y 2 :z 3) :missing)
(:x 1 :y 2 :z 3)

>

GBBopen 1.5 Reference
116 3 GBBopen Tools

set-equal list-1 list-2 ckey test test-not key = boolean [Function]

Purpose
Determine if all elements in two lists are present in both lists.

Package :gbbopen-tools
Module :gbbopen-tools

Arguments

list-1 A proper list

list-2 A proper list

test A function designator specifying a function object of two arguments that returns a
generalized boolean (default is #’ eql)

test-not A function designator specifying a function object of two arguments that returns a
generalized boolean (use of : test—not is deprecated)

key A function designator specifying a function object of one argument, or ni1 (default is nil)
boolean A generalized boolean

Returns
True if all elements in list-1 are also in list-2 and vice versa; nil otherwise.

Description

Duplicate elements in either list are permitted, so the lengths of list-1 and list-2 can differ and still
return true.

Examples
> (set-equal " (1 2 3) (3 2 1))
t
> (set-equal (1 2) (3 2 1))
nil
> (set-equal " (1 2 3) (3 1))
nil

(set-equal " (1 2 3) "(3 3 3 2 1))

>
t
> (set-equal (1 2 3) "(4 5 6 7) :test #'/=)
t
>

GBBopen 1.5 Reference
3 GBBopen Tools 117

sets-overlap-p list-1 list-2 skey test test-not key = boolean [Function]

Purpose
Determine if any element in list-1 appears in list-2.

Package :gbbopen-tools
Module :gbbopen-tools

Arguments

list-1 A proper list

list-2 A proper list

test A function designator specifying a function object of two arguments that returns a
generalized boolean (default is #’ eql)

test-not A function designator specifying a function object of two arguments that returns a
generalized boolean (use of : test—not is deprecated)

key A function designator specifying a function object of one argument, or ni1 (default is nil)
boolean A generalized boolean

Returns
True if any element in list-1 is also in list-2; nil otherwise.

Description
Duplicate elements in either list are permitted.
Examples
> (sets-overlap-p (1 2 3) (3 4 5))
t
> (sets-overlap-p "(1 2) "(3 4 5))
nil
> (sets-overlap-p (1 3 7) "(3 4 5 6) :test #'/=)
t
>

GBBopen 1.5 Reference
118 3 GBBopen Tools

shuffle-list list = shuffled-list

Purpose

Return a copy of a list, with the elements in random order.

Package :gbbopen-tools
Module :gbbopen-tools

Arguments
list A proper list
shuffled-list A proper list

Returns
The shuffled copy of list.

Examples

> (shuffle-list ' (a b ¢ d))

(b a c d)

(shuffle-1list " (a b c d))

>
(c a d b)
>

GBBopen 1.5 Reference
3 GBBopen Tools

[Function]

119

shrink-vector vector length = vector [Function]

Purpose
Shorten a one-dimensional simple array destructively, if possible.

Package :gbbopen-tools
Module :gbbopen-tools

Arguments
vector A “simple” vector that is a one-dimensional simple array
length A non-negative integer, not greater than the length of vector

Returns

The truncated vector, which may not be identical (eq) to the original vector argument on some
Common Lisp implementations.

Description
This function provides access to the Common Lisp implementation’s low-level truncation operation.

Example

> (shrink-vector "abcdefghijklmnopgrstuvwxyz" 3)
" abc n
>

Note
This function is compiled in-line for top performance.

GBBopen 1.5 Reference
120 3 GBBopen Tools

sole-element list = element or nil [Function]

Purpose
Return the first element of a list containing, at most, one element.

Package :gbbopen-tools
Module :gbbopen-tools

Arguments
list A proper list
element An object

Returns
The sole element of list or nil.

Errors
List contains more than one element.

Description

If list is a cons, sole-element returns the car of that cons. If list is ni1, sole-element returns nil.
If list is a cons and the cdr of that cons is not ni1, a continuable error is signaled. If you continue
from the error, the first element is returned.

This function is preferable to car when you expect a list of, at most, one element. For example, this
function is often used on the results of calling find-instances or filter-instances when only a single
unit instance is expected in the result list.

Examples

> (sole—element ' (a))

a

> (sole—element nil)

nil

> (sole-element ' (a b))

Error: The list (a b) contains more than 1 element.
If continued - Ignore the remaining elements.

>>

Note
This function is compiled in-line for top performance.

GBBopen 1.5 Reference
3 GBBopen Tools 121

splitting-butlast list soptional n = result-list, tail [Function]

Purpose

Return all but the last n elements of list and, as a second value, the tail containing those last n
elements.

Packqge :gbbopen-tools
Module :gbbopen-tools

Arguments

list A proper list or a dotted list

n A non-negative integer (default is 1)
result-list A proper list

tail A proper list or a dotted list

Returns
Two values:

e a copy of list up to, but not including, the last n conses
e the unused tail of Iist

Examples
> (splitting-butlast ' (a b c d e))
(a b c d)

)

(splitting-butlast " (a b c d e) 3)

)

e)

(splitting-butlast ’"(a b . c))

)

b
d

(e
>
(a
(c
>
(a
(b c)
>

GBBopen 1.5 Reference
122 3 GBBopen Tools

sorted-maphash function hash-table predicate &key key [Function]

Purpose

Apply a function once to each of the entries in a hash table according to the entry-key order
determined by the predicate function

Packqge :gbbopen-tools
Module :gbbopen-tools

Arguments

function A function designator specifying a function object of two arguments, the key and value of
the hash-table entry

hash-table A hash table

predicate A function designator specifying a function object of two arguments that returns a
generalized boolean

key A function designator specifying a function object of one argument, or nil (defaultis nil)

Description

For each entry in the hash table, the function is called with two arguments—the key and the value of
that entry.

The first argument to the predicate function is the key of one entry in the hash table (or part of that
key extracted by the key function, if supplied); the second argument is the key of another entry in the
hash table (or part of that key extracted by the key function, if supplied). The predicate function
should return true if and only if the first argument is strictly less than the second; otherwise the
predicate should return false.

Example
Print a list of entries in hash-table, in ascending order of their keys (which are strings):
(sorted—-maphash
#’ (lambda (key value)
(format t "~&;; key: ~s value: ~s~%" key value)
hash-table
#’ string<)

GBBopen 1.5 Reference
3 GBBopen Tools 123

sortf place predicate skey key [Macrol]

Purpose
Sort the sequence value of place, and change the value of place to the sorted result.

Package :gbbopen-tools
Module :gbbopen-tools

Arguments
place A form which is suitable for use as a generalized reference

predicate A function designator specifying a function object of two arguments that returns a
generalized boolean

key A function designator specifying a function object of one argument, or ni1l (default is nil)

Description

The first argument to the predicate function is one element of the sequence value in place (or part of
that element extracted by the key function, if supplied); the second argument another element of the
sequence (or part of that element extracted by the key function, if supplied). The predicate function
should return true if and only if the first argument is strictly less than the second; otherwise the
predicate should return false.

The sorting operation can be destructive, and it is not guaranteed stable. Elements considered equal
by predicate might not stay in their original order.

See also
stable-sortf (page 125)

Example
> (defparameter *xx (1 5 3 2 4))
* X *
> (sortf *x* <)
(L 2 3 405)
> kX%
(L 2 3 4°05)

>

GBBopen 1.5 Reference
124 3 GBBopen Tools

stable-sortf place predicate skey key [Macro]

Purpose
Stably sort the sequence value of place, and change the value of place to the sorted result.

Package :gbbopen-tools
Module :gbbopen-tools

Arguments
place A form which is suitable for use as a generalized reference

predicate A function designator specifying a function object of two arguments that returns a
generalized boolean

key A function designator specifying a function object of one argument, or ni1l (default is nil)

Description

The first argument to the predicate function is one element of the sequence value in place (or part of
that element extracted by the key function, if supplied); the second argument another element of the
sequence (or part of that element extracted by the key function, if supplied). The predicate function
should return true if and only if the first argument is strictly less than the second; otherwise the
predicate should return false.

The sorting operation can be destructive. Elements considered equal by predicate stay in their
original order.

See also
sortf (page 124)

Example
> (defparameter *xx (1 2 3 6 5 4))
* X *
> (stable-sortf xx* #’ (lambda (x y) (and (oddp x) (evenp y))))
(L 352 6 4)
> kX%
(L 352 6 4)

>

GBBopen 1.5 Reference
3 GBBopen Tools 125

standard-gbbopen-instance

Package :gbbopen-tools
Module :gbbopen-tools

Description

[Class]

The class standard-gbbopen-instance is a subclass of standard-object. It is a superclass of
deleted-unit-instance, standard-event-instance, standard-link-pointer, and

standard-unit-instance.

See also

deleted-unit-instance (page
print-instance-slots (page
standard-event-instance (page
standard-link-pointer (page
standard-unit-instance (page

126

337)
107)
411)
388)
370)

GBBopen 1.5 Reference
3 GBBopen Tools

trimmed-substring character-bag string soptional start end = trimmed-substring

Purpose

Extract and trim a substring from string.

Package
Module :gbbopen-tools

Arguments

character-bag A sequence containing characters

string
start
end
trimmed-substring A string

Returns
The extracted, trimmed string

Examples

> (trimmed-substring '
n abc n

> (trimmed-substring "
n abc n

> (trimmed-substring "
n abc yyy "

> (trimmed-substring "
n abc y"

> (trimmed-substring "
"X abc "

> (trimmed-substring "
n abc n

>

Note

:gbbopen-tools

A string designator

(#\space #\tab)

"XXX

"xxxX
n

XXX

"XXX

abc

abc

abc

abc

Starting index into string (default is 0)

"XxXX

1%
yyy"
nw

Yyy

yyy"

abc

3 12)

3 13)

2 12)

The function trimmed-substring is semantically equivalent to

(string-trim character-bag

but avoids allocating an intermediate substring.

GBBopen 1.5 Reference
3 GBBopen Tools

Ending index into string (default is ni1, meaning end of string)

yyy" 3 12)

(subseq string start end))

[Function]

127

undefmethod function-name {method-qualifier}” specialized-lambda-list [Macro]
[[declaration™ | documentation]] form™

Purpose
Locate and undefine a method.

Package :gbbopen-tools

Module :gbbopen-tools

Arguments

function-name Either a symbol or (setf symbol)

method-qualifier A non-list method qualifier object (such as :before, :after, or :around)
specialized-lambda-list A specialized lambda list (as per de fmethod)

declarations A declare expression (not evaluated)

documentation A documentation string (not evaluated)

forms Zero or more forms

See also

continue-patch (page 28)
finish-patch (page 40)
patch (page 53)
start-patch (page 57)

Example
After creating an undesired method, use undefmethod to remove it:

> (defmethod instance-name-of :before ((instance standard-unit-instance))
(print "Oops"))

#<standard-method instance-name-of :before (standard-unit-instance)>

> (instance-name-of (find-instance-by-name 112 "hyp))

"Oops"

112

> (undefmethod instance-name-of :before ((instance standard-unit-instance)))

#<standard-generic-function instance-name-of>

> (instance-name-of (find-instance-by-name 112 "hyp))

112

>

Note

This macro may not be able to locate and undefine some methods with environment-specific eql
specializers.

GBBopen 1.5 Reference
128 3 GBBopen Tools

unbound-value-indicator

Purpose
Represent an unbound value.

Package :gbbopen-tools
Module :gbbopen-tools
Value type A keyword symbol
Value :--——unbound-—-

See also
define-unit-class (page 330)

Example

[Constant]

Define a slot-reader function that returns the value of my-slot or unbound-value-indicator if the

slot is unbound:

(defun safe-my-slot-of (instance)
(if (slot-bound-p instance 'my-slot)
(slot-value instance
unbound-value—indicator))

GBBopen 1.5 Reference
3 GBBopen Tools

"my—-slot)

129

until test-form declaration™ form™

Purpose

[Macro]

Evaluates test-form and each form repeatedly, as long as test-form evaluates to nil.

Package :gbbopen-tools
Module :gbbopen-tools

Arguments

test-form A form

declaration A declare expression (not evaluated)
forms An implicit progn of forms to be evaluated

See also

do-until (page 85)
do-while (page 86)
while (page 131)

Examples
> (let ((i 0))
(until (> (incf 1) 3)
(print 1)))
1
2
3
nil
> (until 't (print "No"))
nil
>

130

GBBopen 1.5 Reference
3 GBBopen Tools

while test-form declaration™ form™

Purpose

Evaluates test-form and each form repeatedly, until test-form evaluates to nil.

Package :gbbopen-tools
Module :gbbopen-tools

Arguments

test-form A form

declaration A declare expression (not evaluated)
forms An implicit progn of forms to be evaluated

See also

do-until (page 85)
do-while (page 86)
until (page 130)

Examples
> (let ((1i 0))
(while (<= (incf 1) 3)
(print i)))
1
2
3
nil
> (while nil (print "No"))
nil
>

GBBopen 1.5 Reference
3 GBBopen Tools

[Macro]

131

with-error-handling [form | (form [(:conditions type)] handler-form™) error-form™ [Macro]
= result”

Purpose
Evaluate each handler-form and each error-form if an error occurs while evaluating form.

Packqge :gbbopen-tools

Module :gbbopen-tools

Arguments
form A form
type A type specifier (default is (and error (not interrupt-signal)) on Allegro CL;

otherwise error)
handler-forms Zero or more forms
error-forms Zero or more forms

results The values returned by evaluating form, the values returned by evaluating the last
handler-form form or the last error-form form, or no values

Returns
The values returned by evaluating form unless an error occurs during that evaluation in which case:

e the values of evaluating the last error-form form, if specified, are returned
e otherwise, the values of evaluating the last handler-form form, if specified, are returned

e otherwise, no values are returned

Description

If an error occurs while evaluating form, each handler-form is evaluated in the dynamic context of the
error, then the dynamic context is unwound to that in which form was evaluated and each error-form
is evaluated.

A lexical function, error-message, is available for use within each handler-form and error-form.
This lexical function accepts no arguments and returns a string describing the error that occurred
during the evaluation of form.

Another lexical function, error-condition, is also available for use within each handler-form and
nobrerror-form. This lexical function accepts no arguments and returns the condition object that
signaled the error.

The conditions that are handled can be changed by using the (:conditions type) option. Unlike
other Common Lisp implementations, Allegro CL includes interrupt signals (typically generated by
the user typing control-C characters in the REPL) as error conditions. Interrupt signals are
excluded by default on Allegro CL.

See also
disable-with-error-handling (page 64)

GBBopen 1.5 Reference
132 3 GBBopen Tools

http://franz.com/products/allegrocl/
http://franz.com/products/allegrocl/

with-error-handling

Examples
> (with-error-handling (values 1 2 3) ' :error-occurred)
1
2
3
> (with-error-handling (values 1 2 (error "Bad")) ’:error-occurred)
rerror—-occurred
> (with-error-handling (values 1 2 (/ 10 0)) (printv (error-message)) nil)
H (error-message) => "Attempt to divide 10 by zero."
nil
> (defparameter *xx 0)
* X *

> (with-error-handling
((let ((xxx 1))
(error "A silly error has occurred."))
(printv "Handler form" (error-message) *xx)
(values :c :b :a))
(printv "Error form" (error-message) *xXx)
(values :a :b :c))
;; Handler form
H (error-message) => "A silly error has occurred."
¥ *X*x => 1
Error form
(error-message) => "A silly error has occurred."”
x => 0

~.
~.

~.
~.

QO o ~

> (with-error-handling
((let ((xxx 1))
(error "A silly error has occurred."))

(printv "Handler form" (error-message) *xx)
(values :c :b :a))) ; No error forms
;; Handler form
HF (error-message) => "A silly error has occurred."

X => 1

> (with-error-handling
;; No handler-forms:
((let ((xxx 1))
(error "A silly error has occurred.")))
(printv "Error form" (error-message) *X%*)
(values :a :b :c))
;; Error form

HF (error-message) => "A silly error has occurred."

B *xX* => 0

ra

:b

el

> (with-error-handling (warn "Not too bad") ’:error—-occurred)

GBBopen 1.5 Reference
3 GBBopen Tools 133

with-error-handling

;; Warning: Not too bad
nil
> (with-error-handling ((warn "Not too bad")
(:conditions (or (and error
#+allegro
(not interrupt-signal))
warning)))
rerror—-occurred)
rerror-occurred
>

with-error-handling

GBBopen 1.5 Reference
134 3 GBBopen Tools

with-full-optimization (option™) declaration™ form™ = result™ [Macro]

Purpose

Compile forms with (speed 3), (safety 0), (debug 0), and (compilation-speed 0)
optimization settings.

Packqge :gbbopen-tools
Module :gbbopen-tools

Arguments

option No options are currently supported

declaration A declare expression (not evaluated)

forms An implicit progn of forms to be evaluated
results The values returned by evaluating the last form

Returns
The values returned by evaluating form.

Description

This macro provides a convenient means of declaring small code fragments for fastest (and least safe)
compiler optimizations. If the feature :full-safety is present at compile time, this macro has no effect
on optimization settings.

Examples
Declare a function definition, including argument checking, to be fully optimized for the fastest (and
least safe) execution:
(with-full-optimization ()
(defun extent-> (value)
‘(,value ,infinity)))

Optimize the same function definition, but this time without invocation and argument-checking
optimizations:
(defun extent-> (value)
(with-full-optimization ()
‘(,value ,infinity)))

GBBopen 1.5 Reference
3 GBBopen Tools 135

with-generate-accessors-format (format [prefix/suffix-namel) form™ = result™ [Macrol]

Purpose

Change the default for accessor names generated by define-class, define-event-class,
define-space-class, and define-unit-class definitions appearing in formes.

Package :gbbopen-tools
Module :gbbopen-tools

Arguments
format Either the keyword :prefix or : suffix
prefix/suffix-name One of the following (evaluated):

e A string

e A symbol

¢ A function designator specifying a function object accepting two arguments,
class-name and slot-name, that returns the complete string to be used for the
accessor name

forms An implicit progn of forms
results The values returned by evaluating the last form
Returns

The values returned by evaluating the last form.

Description

If a function object prefix/suffix-name is specified, it is called to produce the complete accessor-name
string, no matter which format value is provided. Otherwise, if : prefix is specified as the format
value, a string or symbol prefix/suffix-name is concatenated in front of the slot name to generate the
slot-accessor name. If : suffix is specified as the format value, a string or symbol prefix/suffix-name
is concatenated after the slot name.

The default prefix/suffix-name for : prefix is a function that generates historical GBB-style
“class-name . slot-name” slot accessors; the default for : suffixis ’#:-of.

See also

define-class (page 83)
define-event-class (page 394)
define-space-class (page 438)
define-unit-class (page 330)

Examples

Define three classes, point, circle, and rectangle, generating GBB-style “class-name . slot-name”
slot accessors:

> (with-generate-accessors—-format (:prefix)
(define-class point ()
(x y))

(define—-class circle (point)

GBBopen 1.5 Reference
136 3 GBBopen Tools

with-generate-accessors-format

(radius))
(define—-class rectangle (point)
(length width)))
#<standard-class rectangle>
>

Re-define the classes, generating “slot-name”-only slot accessors:

> (with-generate-accessors—format (:suffix "")
(define-class point ()
(x y))
(define-class circle (point)
(radius))

(define—-class rectangle (point)
(length width)))
#<standard-class rectangle>
>

Re-define the classes, generating “slot-name-o f -class-name” slot accessors (note that the
strange-name-string name-generation function must be available at compile time):

> (eval-when (:compile-toplevel :load-toplevel :execute)
(defun strange-name-string (class—-name slot-name)
(concatenate ’'simple-string
(symbol-name class—name)
(symbol-name ’#:0f) "-"
(symbol—-name slot—-name))))
strange—-name-string
> (with-generate-accessors—-format (:prefix (symbol-function
"strange—-name-string))
(define-class point ()
(x y))
(define-class circle (point)
(radius))
(define-class rectangle (point)
(length width)))
#<standard-class rectangle>
>

n_mn

with-generate-accessors-format

GBBopen 1.5 Reference
3 GBBopen Tools

137

with-gensyms (symbol™®) declaration™ form™ = result™

Purpose
Bind each symbol to a gensym symbol.

Package :gbbopen-tools
Module :gbbopen-tools

Arguments

symbols Zero or more symbols to be bound to gensyms
declaration A declare expression (not evaluated)

forms An implicit progn of forms to be evaluated
results The values returned by evaluating the last form

Returns
The values returned by evaluating the last form.

Examples
> (pprint (macroexpand ’ (with-gensyms (a b) (form))))
(let ((a (gensym))

(b (gensym)))
(form))

138

[Macro]

GBBopen 1.5 Reference
3 GBBopen Tools

with-once-only-bindings (symbol ™) declaration™ form™ = result™

Purpose

[Macro]

Evaluate, in order, each symbol and then make every reference to symbol inside each form refer to

that value.
Packqge :gbbopen-tools

Module :gbbopen-tools

Arguments

symbols Zero or more symbols to be evaluated once only
declaration A declare expression (not evaluated)

forms An implicit progn of forms to be evaluated
results The values returned by evaluating the last form
Returns

The values returned by evaluating the last form.

Description

This is GBBopen’s version of the “once-only” macro-writing macro that ensures that the forms
associated with macro arguments are only evaluated once and in the specified order.

Example
(define-compiler-macro ensure-list (x)
(with-once-only-bindings (x)
‘(1f (listp ,x) ,x (list ,x))))

GBBopen 1.5 Reference
3 GBBopen Tools

139

Xor &rest args = boolean [Function]
Purpose

Return the exclusive or (XOR) of zero or more arguments.

Package :gbbopen-tools

Module :gbbopen-tools

Arguments
arg A generalized boolean (an object)
boolean A generalized boolean

Returns
True if there are an even odd number of true arguments; ni1 otherwise.

Examples
> (xXor)
nil
> (xor nil nil)
nil
> (xor 't 't)
nil
> (xor nil ’'t)
t

(xor "t nil)

>
t
> (xor nil "t nil "t 't nil)
t
>

GBBopen 1.5 Reference
140 3 GBBopen Tools

3.1 CLOS and MOP

The GBBopen Tools module imports commonly used CLOS and MOP symbols into the
:gbbopen-tools package and then exports them, making it easy to use CLOS and MOP entities
(without worrying about each Common Lisp implementation’s package structure) by simply using the
:gbbopen-tools package. The following CLOS and MOP symbols are exported by
:gbbopen-tools:

accessor-method-slot-definition
add-dependent

add-direct-method
add-direct-subclass
class-default-initargs
class—-direct-default-initargs
class—direct-slots
class-direct-subclasses
class—-direct-superclasses
class—-finalized-p
class—-precedence-list
class—prototype

class—-slots
compute-applicable-methods-using-classes
compute-class—-precedence-1list
compute—-default-initargs
compute-discriminating—function
compute-effective-method
compute-effective-slot-definition
compute-slots
direct-slot-definition
direct-slot—-definition-class
effective-slot-definition
effective-slot-definition-class
ensure—-class
ensure-class-using-class
ensure—generic—function-using-class
eql-specializer
egl-specializer-object
extract-lambda-list
extract-specializer—-names
finalize-inheritance
find-method-combination
forward-referenced-class
funcallable-standard-class
funcallable-standard-instance-access
funcallable-standard-object
generic-function-argument-precedence-order
generic-function-declarations
generic-function-lambda-1list
generic-function-method-class
generic-function-method-combination
generic—-function-methods
generic—-function-name
intern-egl-specializer

GBBopen 1.5 Reference
3.1 CLOS and MOP 141

make-method-lambda
map-dependents

metaobject

method-function
method-generic—-function
method-lambda-1list
method-specializers
reader—-method-class
remove—-dependent
remove-direct-method
remove-direct-subclass
set—-funcallable-instance-function
slot-boundp-using-class
slot-definition
slot-definition—-allocation
slot-definition-initargs
slot-definition-initform
slot-definition-initfunction
slot-definition-location
slot-definition—-name
slot-definition-readers
slot-definition-type
slot-definition-writers
slot-makunbound-using-class
slot-value-using-class
specializer
specializer-direct-generic-functions
specializer-direct-methods
standard-accessor—-method
standard-direct-slot-definition
standard-effective-slot-definition
standard-instance-access
standard-reader-method
standard-slot-definition
standard-writer-method
update—-dependent
validate-superclass
writer-method-class

Load-time warning messages are displayed if the Common Lisp implementation does not have one of
these symbols in its CLOS or MOP implementation.

142

3.2 Declared Numerics

The : gbbopen—-tools module contains a set of declared-numeric and pseudo probability (see
page 149) operators that provide convenient shorthands for declaring fixnum, short-float,
single-float, double-float, long-float, and pseudo-probability numeric operations. If
the feature :full-safety is present at compile time, these operators do not make their £ixnum,
single-float, double-float, and long-float declarations.

The names of the declared-numeric and pseudo-probability operators include these “type-indicator”
characters:
Characters Declared Type

& fixnum

S& short-float

S single-float

$S double-float

S long-float

% pseudo-probability

Thus, the declared-numeric + operators are:

+& fixnum addition
+56& short-float addition
+$ single-float addition

+$8 double-float addition
+$$S long-float addition
+% pseudo-probability addition

Most Common Lisp implementations map double-float numbers to the 64-bit IEEE 754 double format
and single-float numbers to the 32-bit IEEE 754 single format. The four types of floating-point
declared numeric operators (short—float, single-float, double-float, and long-float) are
always defined, even if the Common Lisp implementation provides fewer distinct internal float
representations. The features :has-short-float, :has-single-float, :has-double-float,
and :has-long-float are added when the implementation provides that distinct internal float
representation. (The feature :has-single-float is always defined.)

The following two features related to £ixnum capabilities are defined when appropriate:
:fixnum-size-below-29 and : fixnum-size-supports-unsigned-byte-32.

Some examples of declared-numeric operators include:

(& x) = (the fixnum x)

(+& x y) = (the fixnum (+ (the fixnum x) (the fixnum y))

(>$ a b) = (> (the single-float a) (the single-float b))

(minusp$$ value) == (minusp (the double-float wvalue))

(truncate& x y)) == (the (values fixnum fixnum) (truncate (& x) (& Vv)))

The complete set of operators for each declared numeric type are listed in the following sections.
(Pseudo probability operators are listed in the Pseudo Probabilities section (see page 149) of the
manual.)

GBBopen 1.5 Reference
3.2 Declared Numerics 143

http://www.psc.edu/general/software/packages/ieee/ieee.html
http://www.psc.edu/general/software/packages/ieee/ieee.html

Fixnum operators

These fixnum declared-numeric operators are defined in the : gbbopen—-tools module:

decf-&after

decf-after

decf&—after x delta)

Operator Operation Example
& the fixnum (& x)
+& + (+& Xy z)
iy - (=& x y z)
1+& 1+ (1 & X)
1-& 1- (1-& x)
*& * (*& x vy z)
/& / (/& 2y 2)
=& = (=& Xy z)
/=& /= (/=& x y z)
<& < (<& x vy z)
<=& <= (<=& x y 2)
>& > (>& x y z)
>=§ >= (>=& x y z)
absé& abs (abs& x)
bounded-valueé& bounded-value (bounded-value& x y z)
ceilingé& ceiling (ceilingé& x divisor)
decf& decft (decf& x delta)
(
(

decf/delete&—acons

evenpé&
fceilings
flooré&
fflooré
froundé&
ftruncateé&
incfé&
incf&-after
maxé&

ming
minuspé&
modé&

oddpé&
pluspé&
pushnew/incf&—-acons

roundé&
truncate&
zZeropé&

decf/delete—-acons

evenp
fceiling

floor

ffloor

fround

ftruncate

incft

incf-after

max

min

minusp

mod

oddp

plusp
pushnew/incf-acons

round
truncate
Zerop

decf/delete&—acons

x delta alist)
(evenpé& x)

(fceiling& x divisor)
(floor& x divisor)
(fflooré& x divisor)
(fround& x divisor)
(ftruncate& x divisor)
(incf& x delta)
(incf&—after x delta)
(

(

(

(

(

(

(

min& x y z)

minuspé& x)

modé& x divisor)
oddpé& x)

pluspé& x)

pushnew/incf&—-acons
'x delta alist)

(roundé& x divisor)

(truncate& x divisor)

(zeropé& x)

The one-argument function coerce& provides convenient fixnum coercion:

(setf x

(coerce& x))

Although (coerce x ’ fixnum) is not permitted in Common Lisp, (coerces x) is equivalent to
(truncate x) when the remainder is zero and the returned quotient is a £ixnum. Otherwise,
(coerce& x) signals an error.

144

GBBopen 1.5 Reference
3.2 Declared Numerics

Short-float operators

These short-float declared-numeric operators are defined in the : gbbopen-tools module:

decf-Sgafter

decf-after

decfS$s&—after x delta)

Operator Operation Example
S& the short-float ($& x)
+S& + (+S& x v z)
-$& - (-S& x y z)
1+$& 1+ (1+5& x)
1-S& 1- (1-S& x)
*$& * (*$& X y 2z)
/$56& / (/$& x y z)
=S& = (=$& x vy z)
/=$6& /= (/=$& x y z)
<$& < (<$& x y z)
<=$& <= (<=$%& x y z)
>S4 > (>$& x vy z)
>=$& >= (>=$& x y z)
abss$s abs (abs$& x)
bounded-value$s bounded-value (bounded-value$s x y z)
ceiling$é& ceiling (ceiling$s& x divisor)
decfs$e decf (decf$s& x delta)
(
(

decf/deleteS$S&—acons

evenps$é&
fceiling$s
floors$s
ffloor$s
fround$s
ftruncate$s
incf$s
incfS$s&-after
maxsé&

min$é&
minusp$é&
mod$ &

oddp$s&
plusps$é&
pushnew/incf$&—acons

round$é
truncate$s
zerop$é&

decf/delete—-acons

evenp
fceiling

floor

ffloor

fround
ftruncate

incft
incf-after

max

min

minusp

mod

oddp

plusp
pushnew/incf-acons

round
truncate
Zerop

decf/delete$S&—acons
x delta alist)
(evenp$& x)
(fceiling$s& x divisor)
(floor$s& x divisor)
(ffloor$s& x divisor)
(fround$& x divisor)
(ftruncate$s x divisor)
(incf$& x delta)
(incf$&—-after x delta)
(max$& x y z)
(min$& x y z)
(minusp$& x)
(mod$& x divisor)
(oddp$S& x)
(plusps$s& x)
(pushnew/incf$&—acons
'x delta alist)
(round$& x divisor)
(truncate$s x divisor)
(zerop$& x)

The one-argument function coerce$& provides convenient short-float coercion:

(setf x

GBBopen 1.5 Reference
3.2 Declared Numerics

(coerce$s x))

145

Single-float operators

These single-float declared-numeric operators are defined in the : gbbopen-tools module:

decf-Safter

decf-after

decfS$S—-after x delta)

Operator Operation Example
S the single-float ($ x)
+$ + (+% x y z)
S - (-$ xy z)
1+$ 1+ (1+S5 x)
1-3 1- (1-$ x)
*$ * (x$ x y z)
/$ / (/$ x y z)
=3 = (=$ x y z)
/=9 /= (/=% x y z)
<$ < (<$ x y z)
<=3 <= (<=$ x vy z)
>3 > (>$ x y z)
>=3 >= (>=$ x y z)
abs$ abs (abs$ x)
bounded-value$ bounded-value (bounded-value$ x y z)
ceiling$ ceiling (ceiling$ x divisor)
decfs$ decf (decf$ x delta)
(
(

decf/deleteS$S—-acons

evenps$
fceiling$
floors$
ffloor$
fround$
ftruncate$
incf$
incfS$-after
maxs$

mins$
minusp$
mod$

oddp$
plusps$
pushnew/incf$-acons

round$
truncate$
zerop$

decf/delete—-acons

evenp
fceiling

floor

ffloor

fround

ftruncate

incft

incf-after

max

min

minusp

mod

oddp

plusp
pushnew/incf-acons

round
truncate
Zerop

decf/delete$S—-acons

x delta alist)
(evenp$ x)

(fceiling$ x divisor)
(floor$ x divisor)
(ffloor$ x divisor)
(fround$ x divisor)
(ftruncate$ x divisor)
(incf$ x delta)
(incf$-after x delta)
(

(

(

(

(

(

(

min$ x y z)

minusp$ x)

mod$ x divisor)
oddp$ x)

plusp$ x)

pushnew/incf$-acons
'x delta alist)

(round$ x divisor)

(truncate$ x divisor)

(zerop$ x)

The one-argument function coerce$ provides convenient single-float coercion:

(setf x

146

(coerce$ x))

GBBopen 1.5 Reference
3.2 Declared Numerics

Double-float operators

These double-float declared-numeric operators are defined in the

decf-$Safter

decf-after

decf$S—after x delta)

Operator Operation Example
$s the double-float ($$ x)
+$S + (+$$ x vy 2)
-3$3 - (-$$ x y z)
1+$$ 1+ (1+5S$ x)
1-$$ 1- (1-$% x)
*$ S * (x$S x y z)
/8$ / (/$$ x y z)
=33 = (=$$ x y z)
/=88 /= (/=88 x y z)
<$$ < (<$$ x y z)
<=$$ <= (<=$$ x y z)
>S5S > (>$$ x y z)
>=35$ >= (>=$S x y z)
abs$s abs (abs$$ x)
bounded-valuess bounded-value (bounded-value$$ x y z)
ceiling$s ceiling (ceiling$$ x divisor)
decf$s decf (decf$$ x delta)
(
(

decf/deleteSSS—acons

evenpss
fceilings$s
floorss
ffloors
fround$$
ftruncates
incfs
incf$S-after
max$$

mins$$
minusp$$
mods

oddps$$
plusps$s
pushnew/incf$$-acons

round$$
truncates
zerop$$

decf/delete—-acons

evenp
fceiling

floor

ffloor

fround

ftruncate

incft

incf-after

max

min

minusp

mod

oddp

plusp
pushnew/incf-acons

round
truncate
Zerop

decf/deleteSS—-acons
x delta alist)
(evenp$$ x)
(fceiling$$ x divisor)
(floor$$ x divisor)
(ffloor$$ x divisor)
(fround$$ x divisor)
(ftruncates$$ x divisor)
(incfs$$ x delta)
(incf$$—-after x delta)
(maxss x y z)
(mins x y z)
(minusp$$ x)
(mod$$ x divisor)
(oddps$$ x)
(plusps$s x)
(pushnew/incfS—-acons
'x delta alist)
(round$$ x divisor)
(truncate$$ x divisor)
(zerops x)

The one-argument function coerce$$ provides convenient double-float coercion:

(setf x

GBBopen 1.5 Reference
3.2 Declared Numerics

(coerce$s x))

:gbbopen-tools module:

147

Long-float operators

These 1ong-float declared-numeric operators are defined in the : gbbopen-tools module:

decf-$$Safter

decf-after

decf$$SS—after x delta)

Operator Operation Example
$SS the long-float (58S x)
+5S88 + (+$$S x y z)
-$$5 - (=888 x y z)
1+8$53 1+ (1+$$$ x)
1-8$53 1- (1-$8$ x)
*3S$ * (x$$8 x vy z)
/58S / (/$$$ x v z)
=$35 = (=888 x y z)
/=833 /= (/=8 x y z)
<$$S < (<$$8 x y z)
<=S8% <= (<=8 x vy z)
>$$S > (>$$8 x y z)
>=$$5S >= (>=$$$ x y z)
absss abs (abs$$S x)
bounded-valuess bounded-value (bounded-valuess x y z)
ceiling$$s$s ceiling (ceiling$$$ x divisor)
decfs$ss decf (decfs$ss x delta)
(
(

decf/deleteS$$S—acons

decf/delete—-acons

decf/deleteSS$S—acons
x delta alist)

evenpss evenp (evenpss$ x)
fceiling$$s$ fceiling (fceiling$$$ x divisor)
floor$ss floor (floor$ss x divisor)
ffloor$ss ffloor (ffloor$S$s x divisor)
fround$$$ fround (froundss$ x divisor)
ftruncates$ss ftruncate (ftruncate$s$$ x divisor)
incfs$ss incf (incf$$s x delta)
incfssS$—after incf-after (incf$s$S—after x delta)
maxs$ss max (max$s$ x y z)
mins min (minss x y z)
minusp$$$s minusp (minuspss$ x)
mod$$$s mod (mod$$$ x divisor)
oddp$$$ oddp (oddps$$s x)
pluspss plusp (plusp$ss x)

(

pushnew/incf$$$—-acons

pushnew/incf-acons

pushnew/incf$$$—-acons
'x delta alist)

round$$s$ round (round$$$ x divisor)
truncatess truncate (truncate$s$$ x divisor)
zeropsss zerop (zeropsS x)

The one-argument function coerce$$$ provides convenient long-float coercion:

(setf x (coercesS x))

148

3.3 Pseudo Probabilities

The : gbbopen-tools module provides a discretized fixnum representation for probability values in
which probability values in the range [0.0..1.0] are represented as the nearest integers in the range

[0..1000].
The following pseudo-probability operators are provided:

Operator Operation Example

% the pseudo-probability (% x)

+% +& (+% x vy 2z)

-% -& (=% x vy z)

1+% 1+& (1+% x)

1-% 1-& (1-% x)

*% normalizing *& (*% x y z)

/% normalizing /& (/% x y z)

=% =& (=% x vy z)

/=% /=& (/=% x vy 2)

<% <& (<% x vy 2z)

<=% <=§& (<=% x y 2z)

>% >& (>% x vy 2z)

>=% >=g (>=% Xy z)

abs% absé& (abs% x)

bounded-value% bounded-valueé& (bounded value% x y z)

ceiling% normalizing ceilings (ceiling$% x divisor)

decft% decfé& (decf% x delta)

decf-%after decf-afteré (decf%—after x delta)

decf/delete%—-acons decf/delete-aconss (decf/delete%-acons
x delta alist)

evenp% evenp& (evenp% x)

fceiling$ normalizing fceilings& (fceiling% x divisor)

floor$ normalizing floors& (floor$ x divisor)

ffloor% normalizing ffloors& (ffloor% x divisor)

fround$% normalizing frounds (fround% x divisor)

ftruncate% normalizing ftruncates (ftruncate% x divisor)

incf% incfs (incf% x delta)

incf%-after incf-afters& (incf%-after x delta)

max$ maxé& (max% x y 2z)

min% miné& (min% x y z)

minusp% minuspé& (minusp% x)

mod% modé& (mod% x divisor)

oddp% oddpé& (oddp% x)

plusp% pluspé& (plusp% x)

pushnew/incf%-acons pushnew/incf-aconsé (pushnew/incf%-acons
"x delta alist)

round$% normalizing roundé& (round% x divisor)

truncate% normalizing t runcates (truncate% x divisor)

Zerops zZeropé& (zerop% x)

GBBopen 1.5 Reference
3.3 Pseudo Probabilities

149

*9, pseudo-probability™ = pseudo-probability-product

Purpose

[Function]

Returns the product of numbers, performing pseudo-probability-normalization in the process.

Package :gbbopen-tools

Module :gbbopen-tools

Arguments

pseudo-probability A fixnum pseudo-probability
pseudo-probability-product A fixnum pseudo-probability

Returns

The fixnum pseudo-probability product of numbers or 1000 if no numbers are supplied.

See also

1% (page 151)
pprob2prob (page 155)
prob2pprob (page 156)

Examples
> (x 0.6 0.7)
0.42000002
> (x% 600 700)
420
> (+ 0.6 0.7 0.8)
0.33600003
> (% 600 700 800)
336
> (*x%)
1000
>

150

GBBopen 1.5 Reference

3.3 Pseudo Probabilities

/% pseudo-probability-numerator pseudo-probability-denominator™ = quotient [Function]

Purpose

Returns the quotient of dividing pseudo-probability-numerator by all of the
pseudo-probability-denominators, performing pseudo-probability-normalization in the process.

Alternate syntax
/% pseudo-probability-numerator = reciprocal

Packqge :gbbopen-tools
Module :gbbopen-tools

Arguments
pseudo-probability-numerator A fixnum pseudo-probability
pseudo-probability-denominator A fixnum pseudo-probability

quotient A pseudo-probability-normalized £ixnum
reciprocal A pseudo-probability-normalized fixnum
Returns

The pseudo-probability-normalized fixnum quotient (if one or more pseudo-probability-denominators
is specified; otherwise the pseudo-probability-normalized fixnum reciprocal of
pseudo-probability-numerator.

Description

pseudo-probability-normalization is performed by /%, but the fixnum result may not be a
pseudo-probability. It is an error to specify more than one pseudo-probability-denominator value that
leads to an intermediate result that is larger than a f£ixnum.

See also

*% (page 150)
pprob2prob (page 155)
prob2pprob (page 156)

Examples
> (/ 0.6 0.8)
0.75
> (/% 600 800)
750
> (/ 0.6 0.8 0.9)
0.8333334
> (/% 600 800 900)
833
> (/ 0.8 0.5)
1.6 ; not a probability
> (/% 800 500)
1600 ; not a pseudo-probability
> (/ 5.0) ; not a probability

GBBopen 1.5 Reference
3.3 Pseudo Probabilities 151

/%

0.2
> (/% 5000) ; not a pseudo-probability
200
> (/ 0.5)
2.0 ; not a probability
> (/% 500)
2000 ; not a pseudo-probability
>
1%

GBBopen 1.5 Reference
152 3.3 Pseudo Probabilities

exp% pseudo-probability-In = pseudo-probability [Function]

Purpose
Return the “pseudo natural logarithm” (pseudo-probability-In) of a pseudo-probability value.

Package :gbbopen-tools
Module :gbbopen-tools

Arguments
pseudo-probability A fixnum pseudo-probability
pseudo-probability-In A fixnum pseudo-probability-In

Returns
The fixnum pseudo-probability-ln of pseudo-probability.

See also

In% (page 154)
pprob2prob (page 155)
prob2pprob (page 156)

Examples
> (exp 0.0)
1.0
> (exp% 0)
1000
> (exp —-6.907756)
9.999995e-4
> (exp% —-6907756)
1
>

GBBopen 1.5 Reference
3.3 Pseudo Probabilities 153

In% pseudo-probability™ = pseudo-probability-In [Function]

Purpose
Return the “pseudo natural logarithm” (pseudo-probability-In) of a pseudo-probability value.

Package :gbbopen-tools
Module :gbbopen-tools

Arguments
pseudo-probability A fixnum pseudo-probability
pseudo-probability-In A fixnum pseudo-probability-In

Returns
The fixnum pseudo-probability-ln of pseudo-probability.

See also

exp% (page 153)
pprob2prob (page 155)
prob2pprob (page 156)

Examples
> (log 1.0)
0.0
> (1In% 1000)
0
>

(log 0.001)
-6.9077554
> (1n% 1)
-6907756
>

GBBopen 1.5 Reference
154 3.3 Pseudo Probabilities

pprob2prob pseudo-probability = probability

Purpose
Returns the value of pseudo-probability as a probability.

Package :gbbopen-tools

Module :gbbopen-tools

Arguments

pseudo-probability A fixnum pseudo-probability
probability A [0.0..1.0] probability
Returns

The converted probability.
See also

prob2pprob (page 156)

Examples
> (pprob2prob 0)

pprob2prob 1000)

.0
(
.0
(pprob2prob 800)
.8

vV © V ~ V O

GBBopen 1.5 Reference
3.3 Pseudo Probabilities

[Function]

155

prob2pprob probability = pseudo-probability

Purpose
Returns the value of probability as a pseudo-probability.

Package :gbbopen-tools
Module :gbbopen-tools

Arguments
probability A [0.0..1.0] probability
pseudo-probability A fixnum pseudo-probability

Returns
The converted pseudo-probability.

See also
pprob2prob (page 155)

Examples

> (prob2pprob 0.0)
0

> (prob2pprob 1.0)
1000

> (prob2pprob 0.8)
800

>

156

[Function]

GBBopen 1.5 Reference
3.3 Pseudo Probabilities

3.4 Date and Time

The : gbbopen-tools module includes useful date and time parsing and formatting entities.

In addition to UTC offsets, time-of-day entities support the following time-zone abbreviations for
standard-time (non-daylight-savings) offsets:

Offset Zone

1
2
7/2

-9
-19/2
-10
-21/2
-12

WAT
AT
NST
AST
EST
CST
MST
PST
AKST
HAST
NT
IDLW
GMT
CET
EET
MSK
Zp4
ZP5
IST
ZP6
WAST
AWST
JST
ACST
AEST
NET
NZST

Locations

West Africa (also Cape Verdes Islands, Atlantic Ocean)

Azores

Newfoundland

Atlantic

Eastern (North America)

Central (North America)

Mountain (North America)

Pacific (North America)

Alaska

Hawaii-Aleutian

Nome

International Dateline West

Greenwich (also Portugal, Reykjavik (Iceland), Western Africa)

Central European (also Algeria, Nigeria, Angola)

Eastern European (also Finland, Balkans, Libya, Egypt, South Africa)
Moscow (also Baghdad, Eastern Africa, Ethiopia, Kenya, Tanzania)
Samara (Russia Zone 3)

Yekaterinburg (Russia Zone 4)

Indian

Omsk (Russia Zone 5), Bangladesh)

West Austrailian Standard (also Christmas Island, Krasnoyarsk (Russia Zone 6), Western Indonesia)
Australian Western (also Irkutsk (Russia Zone 7), China, Hong Kong, Philippines, Central Indonesia)
Japan (also Yakutsk (Russia Zone 8), Korea, Eastern Indonesia)
Australian Central

Australian Eastern (also Vladivostok (Russia Zone 9), Papua New Guinea)
Norfolk (Island)

New Zealand (also Kamchatka (Russia), Fiji, Marshall Islands)

and for daylight-savings-time offsets:
Offset Zone

5/2

-9
-21/2
-11

NDT
ADT
EDT
CDT
MDT
PDT
AKDT
HADT
BST
CEDT
EEDT
MSD
AWDT
ACSD
AEDT

Locations

Newfoundland Daylight

Atlantic Daylight

Eastern Daylight (North America)
Central Daylight (North America)
Mountain Daylight (North America)
Pacific Daylight (North America)
Alaska Daylight

Hawaii-Aleutian Daylight

British Summer

Central European Daylight
Eastern European Daylight
Moscow Daylight

Australian Western Daylight
Australian Central Daylight
Australian Eastern Daylight

Time-zone abbreviations used around the world are not unique or universal. The same hour offset can
map onto multiple different zone abbreviations, and the same abbreviations are also used to refer to
different zones. The above choices of supported abbreviations were made arbitrarily, and the use of
UTC offsets is recommended for unambiguous textual representation of the time of day.

GBBopen 1.5 Reference
3.4 Date and Time 157

month-precedes-date

Purpose

[Variable]

Control the default month and date ordering for GBBopen Tools date and time entities.

Package :gbbopen-tools (home package is :module-manager)

Module :module-manager

Value type A generalized boolean

Initial value True

See also

brief-date (page
brief-date-and-time (page
encode-date-and-time (page

full-date-and-time (page
parse-date (page
parse-date-and-time (page
parse-time (page
very-brief-date (page
Examples

Toggle between date formatting options:

> (let ((*month-precedes-datex 't))

161)
163)
168)
172)
181)
184)
190)
195)

(brief-date—and-time))

"Feb 16 13:11"

> (let ((*month-precedes-datex nil))

(brief-date—and-time))

"l6 Feb 13:11"
>

Note

This variable is defined in the :module-manager module in order to make it available as early as

possible.

158

GBBopen 1.5 Reference
3.4 Date and Time

time-first [Variable]

Purpose
Control the default date and time ordering for GBBopen Tools date and time entities.

Package :gbbopen-tools
Module :gbbopen-tools
Value type A generalized boolean
Initial value ni1

See also

encode-date-and-time (page 168)
parse-date-and-time (page 184)

Example
Change the default date and time ordering to have the time precede the date:

> (let ((*time—-first* "t))
(parse—-date—-and-time "10:30pm 4/1/10"))

30
22

2010
nil
nil
14

GBBopen 1.5 Reference
3.4 Date and Time 159

year-first

Purpose

[Variable]

Control the default year positioning for GBBopen Tools date entities.

Package :gbbopen-tools
Module :gbbopen-tools
Value type A generalized boolean
Initial value ni1

See also

brief-date (page 161)
brief-date-and-time (page 163)
encode-date-and-time (page 168)
full-date-and-time (page 172)
parse-date (page 181)
parse-date-and-time (page 184)
very-brief-date (page 195)

Example
Change the default year positioning to have the year first:

> (let ((xyear—-firstx ’t))
(full-date—-and-time nil :all-numeric 't
"2009/02/16 13:11"
> (let ((*year—-firstx "t))
(parse-date "1-4-10" :year-first ’'t))
10
4
2001
6
>

160

:year—-first ’t))

GBBopen 1.5 Reference
3.4 Date and Time

brief-date soptional universal-time skey time-zone month-precedes-date year-first [Function]
include-year destination = result

Purpose
Generate a brief date description.

Package :gbbopen-tools (home package is :module-manager)
Module :module-manager

Arguments

universal-time A Universal Time (default is ni1, which is equivalent to the value returned by
(get—universal-time))

time-zone A time zone (default is ni1, which is equivalent to the current time zone adjusted for
daylight saving time)

month-precedes-date A generalized boolean (default is *month-precedes-date*)

year-first A generalized boolean (default is *year-first*)

include-year A generalized boolean (default is t)

destination Either nil, t, a stream, or a string with a fill pointer (default is ni1)

result A string or nil

Returns

If destination is non-nil, then nil; otherwise, a string.

Description
A 12-character description is generated (6 characters, if include-year is non-nil).

If universal-time is not supplied or is nil, the current time (as returned by get—universal-time is
used.

If time-zone is not supplied or is nil, it defaults to the current time zone adjusted for daylight saving
time. If time-zone is supplied, it is assumed to include any adjustment for daylight saving time.

If month-precedes-date is true, the month is presented in front of the date; otherwise the date
precedes the month.

If year-first is supplied and is non-nil, the year is presented in front of the month and date;
otherwise the year follows the month and date.

If include-year is supplied and is non-nil, the year is included in the presented time.

See also

month-precedes-date (page 158)
brief-date-and-time (page 163)
full-date-and-time (page 172)
http-date-and-time (page 176)
internet-text-date-and-time (page 177)
is08601-date-and-time (page 179)
message-log-date-and-time (page 180)
very-brief-date (page 195)

GBBopen 1.5 Reference
3.4 Date and Time 161

brief-date

Examples
Display the current date (with and without the year):
> (brief-date)
"Feb 16, 2008"
> (brief-date (get-universal-time) :include-year nil)
"Feb 16"
>

Display the date 10 days ago:

> (brief-date (- (get-universal-time) (x 60 60 24 10)))
"Feb 6, 2008"
>

Note

This function is loaded with the :module-manager module in order to to make it available as early
as possible.

brief-date

GBBopen 1.5 Reference
162 3.4 Date and Time

brief-date-and-time coptional universal-time skey time-zone month-precedes-date [Function]
year-first include-seconds destination = result

Purpose
Generate a brief date-and-time description.

Package :gbbopen-tools (home package is :module-manager)
Module :module-manager

Arguments

universal-time A Universal Time (default is ni1, which is equivalent to the value returned by
(get—-universal-time))

time-zone A time zone (default is ni1, which is equivalent to the current time zone adjusted for
daylight saving time)

month-precedes-date A generalized boolean (default is *month-precedes-date*)

year-first A generalized boolean (default is *year-first*)

include-seconds A generalized boolean (default is nil)

destination Either nil, t, a stream, or a string with a fill pointer (default is ni1)
result A stringor nil

Returns

If destination is non-nil, then nil; otherwise, a string.

Description

A 12-character description (15 characters, if include-seconds is non-nil) is generated. If the
universal-time value is within 120 days of the current time, the result string includes the time of day
but not the year; otherwise, the year is included but not the time of day.

If universal-time is not supplied or is nil, the current time (as returned by get—universal-time is
used.

If time-zone is not supplied or is nil, it defaults to the current time zone adjusted for daylight saving
time. If time-zone is supplied, it is assumed to include any adjustment for daylight saving time.

If month-precedes-date is true, the month is presented in front of the date; otherwise the date
precedes the month.

If year-first is supplied and is non-nil, the year is presented in front of the month and date;
otherwise the year follows the month and date.

If include-seconds is supplied and is non-nil, seconds are included in the presented time.

See also

month-precedes-date (page 158)
brief-date (page 161)
full-date-and-time (page 172)
http-date-and-time (page 176)
internet-text-date-and-time (page 177)
is08601-date-and-time (page 179)

GBBopen 1.5 Reference
3.4 Date and Time 163

brief-date-and-time

message-log-date-and-time (page 180)
very-brief-date (page 195)

Examples
Display the current date and time:
> (brief-date—-and-time)

"Feb 16 13:11"
>

Display the current date and time (with seconds):

> (brief-date—-and-time nil :include-seconds ’'t)
"Feb 16 13:11:38"
>

Display the current date and time as GMT:

> (brief-date-and-time nil :time-zone 0)
"Feb 16 18:11"
>

The date and time 10 days ago:

> (brief-date-and-time (- (get-universal-time) (x 60 60 24 10)))
"Feb 6 13:11"
>

The date and time 125 days ago:

> (brief-date-and-time (- (get-universal-time) (*x 60 60 24 125)))
"Oct 12, 2004"
>

The date and time 125 days ago (with seconds, but ignored because no time of day is included for
dates that are not within 120 days of the given time):

> (brief-date-and-time (- (get-universal-time) (x 60 60 24 125))
:include—-seconds ’'t)

"Oct 12, 2004 "
>

Note

This function is loaded with the :module-manager module in order to to make it available as early
as possible.

brief-date-and-time

GBBopen 1.5 Reference
164 3.4 Date and Time

brief-duration seconds soptional maximume-fields destination = result [Function]
Purpose

Format a numeric time duration (in seconds) into brief descriptive text.

Packqge :gbbopen-tools

Module :gbbopen-tools

Arguments
seconds A number

maximum-fields An integer from 1-5 indicating maximum number of fields to include in the
descriptive string (default is 5, indicating all fields should be included)

destination Either nil, t, a stream, or a string with a fill pointer (default is ni1)
result A stringor nil
Returns

If destination is non-nil, then nil; otherwise, a string.

Description

The value of seconds is rounded to the nearest 100" of a second before conversion. Fields omitted by
maximum-fields cause appropriate rounding of the generated description.

See also

brief-run-time-duration (page 167)
parse-duration (page 188)
pretty-duration (page 192)

pretty-run-time-duration (page 194)

Examples

> (brief-duration 1000)

"lé6m 40s"

> (brief-duration -1000)

"-1l6m 40s"

> (brief-duration -1000.12345)
"-1l6m 40.12s"

> (brief-duration -1000.12543)
"-1l6m 40.13s"

> (brief-duration 166611.9)
"ld 22h 16m 51.91s"

> (brief-duration 166611.9 4)
"ld 22h 1l6m 528"

> (brief-duration 166611.9 3)
"ld 22h 17m"

> (brief-duration 166611.9 2)
"1d 22h"

> (brief-duration 166611.9 1)
"2d"

GBBopen 1.5 Reference
3.4 Date and Time 165

brief-duration

> (brief-duration 31556952)
"365d 5h 49m 128"
>

brief-duration

GBBopen 1.5 Reference
166 3.4 Date and Time

brief-run-time-duration internal-time-units &optional maximum-fields destination [Function]
= result

Purpose
Format a run-time duration (in internal-time-units) into brief descriptive text.

Package :gbbopen-tools
Module :gbbopen-tools

Arguments
internal-time-units A number

maximum-fields An integer from 1-5 indicating maximum number of fields to include in the
descriptive string (default is 5, indicating all fields should be included)

destination Either nil, t, a stream, or a string with a fill pointer (default is ni1)
result A stringor nil
Returns

If destination is non-nil, then nil; otherwise, a string.

Description

The internal-time-units run-time duration is rounded to the nearest 100*" of a second before
conversion. Fields omitted by maximum-fields cause appropriate rounding of the generated
description.

See also

brief-duration (page 165)
parse-duration (page 188)
pretty-duration (page 192)

pretty-run-time-duration (page 194)

Examples

> internal-time-units-per-second
1000

> (brief-run-time—-duration 1000)
"lS"

> (brief-run-time-duration 5)
"OS"

> (brief-run-time-duration 6)
"0.01ls"

> most-positive-fixnum

536870911

> (brief-run-time-duration most-positive-fixnum)
"6d 5h 7m 50.94s"

>

GBBopen 1.5 Reference
3.4 Date and Time 167

encode-date-and-time string skey start end junk-allowed date-separators [Function]
time-separators month-precedes-date year-first
default-to-current-year time-first time-zone
= universal-time, pos

Purpose
Parse and then encode a date-and-time specification string to a Universal Time.

Package :gbbopen-tools

Module :gbbopen-tools

Arguments

string A string

start Starting index into string (default is 0)

end Ending index into string (default is ni1, meaning end of string)

junk-allowed A generalized boolean (default is nil)

date-separators A sequence of characters that are skipped and separate the date, month, and
year fields in string, if needed (defaultis "-/ , ")

time-separators A sequence of characters that are skipped and separate the hour, minute, and
second fields in string, if needed (defaultis " :")

month-precedes-date A generalized boolean (default is *month-precedes-date*)

year-first A generalized boolean (default is *year-first*)

default-to-current-year A generalized boolean (default is nil)

time-first A generalized boolean (default is *time-first*)

time-zone A time zone (default is ni1, which is equivalent to the current time zone
adjusted for daylight saving time)

universal-time A Universal Time

position A index in string

Returns

Two values: universal-time and position

Errors

If junk-allowed is false, an error is signaled if a numeric field in string does not consist entirely of the
representation of a integer, possibly surrounded on either side by characters in separators.

Description

Both the month and date must be specified in string, optionally followed by the year and the time of
day. The month can be a numeric value (1-12), a three-letter abbreviation, or the full month name. If
the month is specified numerically, then the value of month-precedes-date is used to determine the
month and date ordering. If no year is specified in string and default-to-current-year is nil, the
current calendar year is assumed, unless the specified month and date have passed, in which case the
next year is assumed. If no year is specified in string and default-to-current-year is true, the current
calendar year is always assumed. If no hour, minute, or second values are specified, they default to
Zero.

If month-precedes-date is true, the month is expected before the date; otherwise the date is expected
to follow the month.

GBBopen 1.5 Reference
168 3.4 Date and Time

encode-date-and-time

If year-first is supplied and is non-nil, the year must be provided and it is expected before the month
and date; otherwise the year (if provided) is expected to follow the month and date.

If a time-zone is specified in string, it is used when encoding the universal-time value. Otherwise, if a
non-nil time-zone argument was supplied, it used for the encoding. Otherwise, the current time zone
adjusted for daylight saving time is used.

If time-first is true, the time-of-day is expected before the date; otherwise the time-of-day is expected
to follow the date.

The returned position is the index within string where the parse ended.

See also

month-precedes-date (page 158)
encode-date-and-time (page 168)
encode-time-of-day (page 171)
parse-date (page 181)
parse-date-and-time (page 184)
parse-duration (page 188)
parse-time (page 190)

Examples

> (encode-date-and-time "1 Apr 2010")

3479083200

10

> (encode-date-and-time "April 1, 2010 10:30")
3479121000

19

> (encode-date-and-time "Thu 1 Apr 2010")

3479083200

14

> (encode-date-and-time "Thursday, April 1, 2010 10:30")
3479121000

29

> (encode—-date—and-time "4/1/10 10:30pm")

3479164200

14

> (encode—-date—and-time "10:30pm 4/1/10" :time-first 't)
3479164200

14

> (encode-date-and-time "Apr 1 2010 10:30 EDT")
3479121000

20

> (encode-date-and-time "Apr 1 2010 10:30PM EDT")
3479164200

22

> (encode-date-and-time "1 Apr 2010 10:30 IST")
3479086800

20

> (encode-date-and-time "1 Apr 2010 10:30" :time-zone -11/2)
3479121000

20

GBBopen 1.5 Reference
3.4 Date and Time 169

encode-date-and-time

> (encode-date-and-time "1 Apr 2010 10:30 EDT" :time-zone -11/2)
3479086800

16

> (encode-date-and-time "April 1, 2010 10:30 UTC-4")

3479121000

25

>

REPL Note

The equivalent of:

(print (encode-date-and-time string))

can be invoked using the REPL command :ut string.

encode-date-and-time

GBBopen 1.5 Reference
170 3.4 Date and Time

encode-time-of-day second minute hour soptional universal-time = universal-time [Function]
Purpose
Return a Universal Time representing a specified time-of-day.

Package :gbbopen-tools (or :portable-threads if Portable Threads is used without
GBBopen Tools)

Module :gbbopen-tools (or :portable-threads if Portable Threads is used without GBBopen
Tools)

Arguments

second An integer between 0 and 59, inclusive
minute An integer between 0 and 59, inclusive
hour An integer between 0 and 23, inclusive

universal-time A Universal Time (default is nil, which is equivalent to the value returned by
(get—universal-time))

Description

If the specified time-of-date has already passed (relative to the universal-time value), the next day is
assumed.

See also
encode-date-and-time (page 168)

Examples
Schedule a scheduled function that prints "It’s quitting time!" every day at 5pm:

> (schedule-function
(make—scheduled-function
#’ (lambda (scheduled-function)
(declare (ignore scheduled-function))
(print "It’s quitting time!"))
:name ’‘quitting-time)
(encode-time-of-day 0 0 17) :repeat-interval #.(x 24 60 60))

Verbosely change quitting-time to 5:30pm every day:

> (schedule-function 'quitting-time (encode-time-of-day 0 30 17)
:repeat—-interval #. (x 24 60 60)
:verbose ’t)
;+ Unscheduling #<scheduled-function quitting-time [17:00:00]>...
;7 Scheduling #<scheduled-function quitting-time [17:30:00]>
;; as the next scheduled-function...
>

GBBopen 1.5 Reference
3.4 Date and Time 171

full-date-and-time coptional universal-time skey time-zone daylight-savings-p [Function]
all-numeric separator full-names month-precedes-date year-first
include-day include-seconds include-time-zone utc-offset-only
12-hour destination = result

Purpose
Generate a date-and-time description.

Package :gbbopen-tools

Module :gbbopen-tools

Arguments

universal-time A Universal Time (default is nil, which is equivalent to the value returned by
(get—-universal-time))

time-zone A time zone (default is ni1, which is equivalent to the current time zone adjusted

for daylight saving time)
daylight-savings-p A generalized boolean (default is nil)

all-numeric A generalized boolean (default is nil)

separator A character (default is #\ /)

full-names A generalized boolean (default is ni1)

month-precedes-date A generalized boolean (default is *month-precedes-date*)
year-first A generalized boolean (default is *year-first*)

include-day A generalized boolean (default is nil)

include-time-zone A generalized boolean (default is nil)

utc-offset-only A generalized boolean (default is ni1)

12-hour A generalized boolean (default is nil)

destination Either nil, t, a stream, or a string with a fill pointer (default is ni1)
result A string or nil

Returns

If destination is non-nil, then nil; otherwise, a string.

Description
A 17-character description (longer if full-names, include-day, include-seconds, include-time-zone, or
utc-offset-only are non-nil) is generated.

If universal-time is not supplied or is nil, the current time (as returned by get—universal-time is
used.

If time-zone is not supplied or is nil, it defaults to the current time zone adjusted for daylight saving
time. If a time-zone is supplied, it is assumed to include any adjustment for daylight saving time
unless daylight-savings-p is specified and is non-nil.

If all-numeric is supplied and is non-nil, the month is indicated by its numeric value, and the date,
month, and year are separated by the separator character.

If full-names is supplied and is non-nil, the full name is generated rather than the abbreviated
name for the month (if include-day is ni1) and for the day of the week, (if include-day is non-ni1).

GBBopen 1.5 Reference
172 3.4 Date and Time

full-date-and-time

If month-precedes-date is true, the month is presented in front of the date; otherwise the date
precedes the month.

If year-first is supplied and is non-nil, the year is presented in front of the month and date;
otherwise the year follows the month and date.

If include-day is supplied and is non-nil, the day of the week is included in front of the date and time.
If include-seconds is supplied and is non-nil, seconds are included in the presented time.

If either include-time-zone or utc-offset-only is true, a time-zone specification is appended to the
date-and-time presentation. If utc-offset-only is true, the time zone is presented as a UTC
offset—even if a time-zone abbreviation supported by GBBopen Tools is available for the time zone. If
a time-zone is supplied, the value of daylight-savings-p is used when generating a non-UTC time
zone abbreviation; otherwise, the local daylight-savings setting for the universal-time value (as
determined by decode-universal-time) is used, and the daylight-savings-p argument is ignored.

If 12-hour is supplied and is non-nil, the time-of-day is presented in AM/PM format.

See also

month-precedes-date (page 158)
brief-date (page 161)
brief-date-and-time (page 163)
encode-date-and-time (page 168)
http-date-and-time (page 176)
internet-text-date-and-time (page 177)
is08601-date-and-time (page 179)
message-log-date-and-time (page 180)
parse-date-and-time (page 184)
very-brief-date (page 195)
Examples

Display the current date and time:

> (full-date—and-time)
"Feb 16 2009 13:11"
>

Display the current date and time (with seconds):

> (full-date—-and-time nil :include-seconds 't)
"Feb 16 2009 13:11:38"
>

Display the current date and time (with the day of the week):

> (full-date—-and-time nil :include-day ’'t)
"Mon Feb 16 2009 13:11"
>

Display the current date and time (with no abbreviations and with the day of the week):

> (full-date—-and-time nil :full-names 't :include-day ’'t)
"Monday, February 16, 2009 13:11"
>

GBBopen 1.5 Reference
3.4 Date and Time 173

full-date-and-time

Display the current date and time (with no abbreviations, with the month following the date, and
with the day of the week):

> (full-date—-and-time nil :full-names 't :include-day 't
:month-precedes-date nil)

"Monday, 16 February, 2009 13:11"

>

Display the current date and time (with no abbreviations, with the year first and the month following
the date, and with the day of the week):

> (full-date-and-time nil :full-names 't :include-day 't
:year—-first 't :month-precedes-date nil)

"2009, 16 February, Monday 13:11"

>

Display the current date and time (all numeric, with the abbreviated day of the week):

> (full-date-and-time nil :all-numeric 't :include-day ’'t)
"Mon 02/16/2009 13:11"
>

Display the current date and time (all numeric, with hyphen (minus-sign) separators):

> (full-date-and-time nil :all-numeric 't :separator #)
"02-16-2009 13:11"
>

Display the current date and time (all numeric, with the year first and the abbreviated day of the
week):
> (full-date-and-time nil :all-numeric 't :year—-first 't :include-day 't)
"2009/02/16 Mon 13:11"
>

Display the current date and time (all numeric, with the month following the date, and with the full
day of the week):

> (full-date—-and-time nil :all-numeric 't :include-day 't
:full-names 't :month-precedes-date nil)

"Monday, 16/02/2009 13:11"

>

Display the current date and time (with time zone):

> (full-date—-and-time nil :include-time-zone ’'t)
"Feb 16 2009 13:11 EST"
>

Display the current date and time (in 12-hour format with time zone):

> (full-date—-and-time nil :12-hour 't :include-time-zone ’'t)
"Feb 16 2009 1:11PM EST"
>

Display the current date and time (with UTC-offset time zone):

GBBopen 1.5 Reference
174 3.4 Date and Time

full-date-and-time

> (full-date—-and-time nil :utc-offset-only ’'t)
"Feb 16 2009 13:11 UTC-5"
>

Display the current date and time (with seconds and time zone):

> (full-date—-and-time nil
:include-seconds 't
:include-time-zone ’t)
"Feb 16 2009 13:11:38 EST"
>

Display the current date and time as GMT:

> (full-date—-and-time nil :time-zone 0)
"Feb 16 2009 18:11"
>

Display the current date and time as GMT (with time zone):

> (full-date—-and-time nil
:time-zone 0
:include—-time—-zone ’'t)

"Feb 16 2009 18:11 GMT"

>

The date and time 10 days ago:

> (full-date-and-time (- (get-universal-time) (parse-duration "10 days")))
"Feb 6 2009 13:11"
>

The date and time 125 days ago:

> (full-date-and-time (- (get-universal-time) (parse-duration "125 days")))
"Oct 12 2008 13:11"
>

The date and time 125 days ago (with seconds):

> (full-date—-and-time (- (get-universal-time) (parse-duration "125d"))
:include—-seconds ’'t)

"Oct 12 2008 13:11:38"

>

REPL Note

The equivalent of:

(print (full-date—-and-time universal-time
:include-seconds 't))

can be invoked using the REPL command :ut universal-time.

full-date-and-time

GBBopen 1.5 Reference
3.4 Date and Time 175

http-date-and-time soptional universal-time skey destination = result [Function]

Purpose

Convert a Universal Time value into HTTP/1.1 time-stamp format.
Package :gbbopen-tools

Module :gbbopen-tools

Arguments
universal-time A Universal Time (default is ni1, which is equivalent to the value returned by
(get—universal-time))

destination Either nil, t, a stream, or a string with a fill pointer (default is ni1)
result A stringor nil
Returns

If destination is non-nil, then nil; otherwise, a string.

Description
If universal-time is not supplied or is nil, the current time (as returned by get—universal-time is
used.

See also

brief-date (page 161)
brief-date-and-time (page 163)
full-date-and-time (page 172)
http-date-and-time (page 176)
internet-text-date-and-time (page 177)
is08601-date-and-time (page 179)
message-log-date-and-time (page 180)
very-brief-date (page 195)
Example

> (http-date—-and-time)
"Wed, 05 Aug 2009 17:29:26 GMT"
>

GBBopen 1.5 Reference
176 3.4 Date and Time

internet-text-date-and-time soptional universal-time skey time-zone [Function]
daylight-savings-p utc-offset-only destination = result

Purpose
Convert a Universal Time value into Internet Text Message format.

Package :gbbopen-tools

Module :gbbopen-tools

Arguments

universal-time A Universal Time (default is ni1, which is equivalent to the value returned by
(get—universal-time))

time-zone A time zone (default is ni1, which is equivalent to the current time zone adjusted

for daylight saving time)
daylight-savings-p A generalized boolean (default is nil)

utc-offset-only A generalized boolean (default is nil)

destination Either nil, t, a stream, or a string with a fill pointer (default is ni1)
result A string or nil

Returns

If destination is non-nil, then nil; otherwise, a string.

Description

If universal-time is not supplied or is nil, the current time (as returned by get—universal-time is
used.

If utc-offset-only is true, the time zone is represented as a UTC offset—even if a time-zone
abbreviation supported by GBBopen Tools is available for the time zone. If a time-zone is supplied,
the value of daylight-savings-p is used when generating a non-UTC time zone abbreviation;
otherwise, the local daylight-savings setting for the universal-time value (as determined by
decode-universal-time)is used, and the daylight-savings-p argument is ignored.

See also

brief-date (page 161)
brief-date-and-time (page 163)
full-date-and-time (page 172)
http-date-and-time (page 176)
is08601-date-and-time (page 179)
message-log-date-and-time (page 180)
very-brief-date (page 195)

Examples
> (internet-text-date—-and-time)
"Sat, 17 May 2008 04:02:49 -0400 (EDT)"
> (internet-text-date-and-time nil :time-zone 0)
"Sat, 17 May 2008 08:02:50 -0000 (GMT)"
>

GBBopen 1.5 Reference
3.4 Date and Time 177

internet-text-date-and-time

internet-text-date-and-time

GBBopen 1.5 Reference
178 3.4 Date and Time

is08601-date-and-time soptional universal-time skey destination = result [Function]

Purpose
Convert a Universal Time value into ISO8601 (XML dateTime) format.
Package :gbbopen-tools

Module :gbbopen-tools

Arguments

universal-time A Universal Time (default is ni1, which is equivalent to the value returned by
(get—universal-time))

destination Either nil, t, a stream, or a string with a fill pointer (default is ni1)
result A stringor nil
Returns

If destination is non-nil, then nil; otherwise, a string.

Description
If universal-time is not supplied or is nil, the current time (as returned by get—universal-time is
used.

See also

brief-date (page 161)
brief-date-and-time (page 163)
full-date-and-time (page 172)
http-date-and-time (page 176)

internet-text-date-and-time (page 177)
message-log-date-and-time (page 180)
very-brief-date (page 195)

Example
> (is0860l-date—and-time)
"2008-05-17T08:02:492z"
>

GBBopen 1.5 Reference
3.4 Date and Time 179

message-log-date-and-time soptional universal-time skey destination = result [Function]
Purpose

Convert a Universal Time value into “message log” (MMM DD HH:MM:SS) format.

Package :gbbopen-tools

Module :gbbopen-tools

Arguments

universal-time A Universal Time (default is ni1, which is equivalent to the value returned by
(get-universal-time)

destination Either nil, t, a stream, or a string with a fill pointer (default is ni1)
result A stringor nil
Returns

If destination is non-nil, then nil; otherwise, a string.

Description
If universal-time is not supplied or is nil, the current time (as returned by get—universal-time is
used.

See also

brief-date (page 161)
brief-date-and-time (page 163)
full-date-and-time (page 172)
http-date-and-time (page 176)
internet-text-date-and-time (page 177)
is08601-date-and-time (page 179)
very-brief-date (page 195)
Example

> (message-log-date—-and-time)
"May 17 04:02:49"
>

GBBopen 1.5 Reference
180 3.4 Date and Time

parse-date string skey start end junk-allowed separators month-precedes-date [Function]
year-first default-to-current-year = date, month, year, position

Purpose
Parse a date-specification string.

Package :gbbopen-tools (home package is :module-manager)

Module :module-manager

Arguments

string A simple string

start Starting index into string (default is 0)

end Ending index into string (default is nil, meaning end of string)
junk-allowed A generalized boolean (default is nil)

separators A sequence of characters that are skipped and separate the date, month, and

year fields in string, if needed (defaultis "-/ , ™)
month-precedes-date A generalized boolean (default is *month-precedes-date*)

year-first A generalized boolean (default is *year-first*)

default-to-current-year A generalized boolean (default is nil)

date An integer between 1 and up to 31, inclusive, depending on the month and
year

month An integer between 1 and 12, inclusive

year An integer

position A index in string

Returns

Four values: date, month, year, and position

Errors

If junk-allowed is false, an error is signaled if a numeric field in string does not consist entirely of the
representation of a integer, possibly surrounded on either side by characters in separators.

Description

Both the month and date must be specified in string, optionally followed by the year and the time of
day. The month can be a numeric value (1-12), a three-letter abbreviation, or the full month name. If
the month is specified numerically, then the value of month-precedes-date is used to determine the
month and date ordering. If no year is specified in string and default-to-current-year is nil, the
current calendar year is assumed, unless the specified month and date have passed, in which case the
next year is assumed. If no year is specified in string and default-to-current-year is true, the current
calendar year is always assumed.

The returned position is the index within string where the parse ended.

See also

month-precedes-date (page 158)
encode-date-and-time (page 168)
encode-time-of-day (page 171)

GBBopen 1.5 Reference
3.4 Date and Time 181

parse-date

parse-date-and-time (page 184)

parse-duration (page 188)
parse-time (page 190)
Examples

> (parse—-date "1 Apr 2010")

1

4

2010

10

> (parse-date "April 1, 2010")

1

4

2010

13

> (parse-date "Thu 1 Apr 2010")

1

4

2010

14

> (parse-date "Thursday, April 1, 2010")

1

4

2010

23

> (parse-date "1-4-10" :month-precedes-date ’'t)

4

1

2010

6

> (parse—-date "1-4-10" :month-precedes-date nil)

1

4

2010

6

> (parse-date "1-4-10" :month-precedes-date 't :year-first ’t)
10

4

2001

6

> (parse-date "1-4-10" :month-precedes-date nil :year-first ’'t)
4

10

2001

6

> (parse—-date "4 Jul") ;; entered May 1, 2008

4

7

2008

5

> (parse—-date "4 Jul") ;; entered August 1, 2008

GBBopen 1.5 Reference
182 3.4 Date and Time

parse-date

4
7
2009
5

> (parse—-date "4 Jul" ;;
:default-to-current-year ’'t)

4
7
2008
5

> (parse—date "4/7

4
7
2008
5

> (parse—date "4/7

Note

" :month-precedes-date nil)

Junk"

entered August 1,

:junk-allowed ’t)

This function is loaded with the :module-manager module in order to to make it available as early

as possible.

GBBopen 1.5 Reference
3.4 Date and Time

parse-date

183

parse-date-and-time string skey start end junk-allowed date-separators [Function]
time-separators month-precedes-date year-first
default-to-current-year time-first = second, minute, hour, date,
month, year, time-zone, daylight-savings-p, pos

Purpose
Parse a date-and-time specification string.

Packqge :gbbopen-tools

Module :gbbopen-tools

Arguments

string A simple string

start Starting index into string (default is 0)

end Ending index into string (default is nil, meaning end of string)

junk-allowed A generalized boolean (default is nil)

date-separators A sequence of characters that are skipped and separate the date, month, and
year fields in string, if needed (defaultis "-/ , ")

time-separators A sequence of characters that are skipped and separate the hour, minute, and

second fields in string, if needed (defaultis " : ")
month-precedes-date A generalized boolean (default is *month-precedes-date*)
year-first A generalized boolean (default is *year-first*)
default-to-current-year A generalized boolean (default is nil)

time-first A generalized boolean (default is *time-first*)

second An integer between 0 and up to 59, inclusive

minute An integer between 0 and up to 59, inclusive

hour An integer between 0 and up to 23, inclusive

date An integer between 1 and up to 31, inclusive, depending on the month and
year

month An integer between 1 and 12, inclusive

year An integer

time-zone A time zone: a rational multiple of 1/3600 between -24 and 24 that represents

the number of hours offset from GMT
daylight-savings-p A generalized boolean

position A index in string

Returns
Nine values: second, minute, hour, date, month, year, time-zone, daylight-savings-p, and position

Errors

If junk-allowed is false, an error is signaled if a numeric field in string does not consist entirely of the
representation of a integer, possibly surrounded on either side by characters in separators.

GBBopen 1.5 Reference
184 3.4 Date and Time

parse-date-and-time

Description

Both the month and date must be specified in string, optionally followed by the year and the time of
day. The month can be a numeric value (1-12), a three-letter abbreviation, or the full month name. If
the month is specified numerically, then the value of month-precedes-date is used to determine the
month and date ordering. If no year is specified in string and default-to-current-year is nil, the
current calendar year is assumed, unless the specified month and date have passed, in which case the
next year is assumed. If no year is specified in string and default-to-current-year is true, the current
calendar year is always assumed. If no hour, minute, or second values are specified, they default to
zero. The values returned for time-zone and daylight-savings-p will be nil unless a time-zone is
specified in string.

If month-precedes-date is true, the month is expected before the date; otherwise the date is expected
to follow the month.

If year-first is supplied and is non-nil, the year must be provided and it is expected before the month
and date; otherwise the year (if provided) is expected to follow the month and date.

If a time-zone is specified in string, it is used when encoding the universal-time value. Otherwise, if a
non-nil time-zone argument was supplied, it used for the encoding. Otherwise, the current time zone
adjusted for daylight saving time is used.

If time-first is true, the time-of-day is expected before the date; otherwise the time-of-day is expected
to follow the date.

The returned position is the index within string where the parse ended.

See also
month-precedes-date (page 158)

encode-date-and-time

encode-time-of-day
full-date-and-time
parse-date
parse-duration
parse-time

Examples

(page
(page
(page
(page
(page
(page

> (parse—-date—-and-time

0

= O O

4
2010
nil
nil
10

> (parse—-date—and-time

0

30
10

1

4
2010

GBBopen 1.5 Reference

3.4 Date and Time

168)
171)
172)
181)
188)
190)

"l Apr 2010")

"April 1,

2010 10:30")

185

nil

nil

19

> (parse-date—and-time
0

30

22

1

4

2010

nil

nil

14

> (parse-date—-and-time
0

30

22

1

4

2010

nil

nil

14

> (parse-date—and-time
0

30

20

> (parse—-date—and-time
0

30

10

1

4

2010

-11/2

nil

20

> (parse-date—and-time
0

30

10

1

4

2010

nil

186

"4/1/10 10:30pm")

"10:30pm 4/1/10" :time-first ’t)

"Apr 1 2010 10:30 EDT")

"l Apr 2010 10:30 IST")

"April 1, 2010 10:30 UTC-7")

parse-date-and-time

GBBopen 1.5 Reference
3.4 Date and Time

parse-date-and-time

parse-date-and-time

GBBopen 1.5 Reference
3.4 Date and Time 187

parse-duration string skey start end separators = seconds [Function]

Purpose

Parse a time-duration-specification string.

Package :gbbopen-tools

Module :gbbopen-tools

Arguments

string A simple string

start Starting index into string (default is 0)

end Ending index into string (default is nil, meaning end of string)

separators A sequence of characters that are skipped between specification items (default
is " , ")

Returns

The duration, in seconds

Description
The following time-duration-unit specifiers are recognized (both singular and plural):
"second" (or "sec" or "s")
"minute" (or "min" or "m")
"hour" (or "hr" or "h")
"day" (or "d")
"week" (or "wk™")
"month" (or "mon™")
nyearu (OI‘ uyr")

A "month" is interpreted as exactly 30 days; a "year" as 365 days.

See also

brief-duration (page 165)
encode-date-and-time (page 168)
encode-time-of-day (page 171)

parse-date (page 181)
parse-date-and-time (page 184)
pretty-duration (page 192)
parse-time (page 190)
Examples

> (parse—-duration "2 minutes")

60

> (parse-duration "-2min")

-60

> (parse-duration "2m")

60

> (parse-duration "365 days, 5 hours, 49 minutes,

188

12 seconds"

GBBopen 1.5 Reference
3.4 Date and Time

parse-duration

31556952

> (parse-duration "365d 5h 49m 12s")
31556952

> (parse—-duration "365d5h49ml2s")
31556952

> (parse-duration "lmin -2secs")
58

> (parse-duration "1lm-2s")

58

> (parse—duration "1/2hr")

1800

> (parse-duration "O0.5hr")

1800.0

> (parse-duration "2 months")
5184000

> (parse-duration "3 wks")
1814400

parse-duration

GBBopen 1.5 Reference
3.4 Date and Time 189

parse-time string skey start end junk-allowed separators = second, minute, hour, [Function]
time-zone, daylight-savings-p, pos

Purpose
Parse a time-of-day specification string.

Package :gbbopen-tools

Module :gbbopen-tools

Arguments

string A simple string

start Starting index into string (default is 0)

end Ending index into string (default is nil, meaning end of string)

junk-allowed A generalized boolean (default is nil)

separators A sequence of characters that are skipped and separate the hour, minute, and
second fields in string, if needed (defaultis " : ")

second An integer between 0 and up to 59, inclusive

minute An integer between 0 and up to 59, inclusive

hour An integer between 0 and up to 23, inclusive

time-zone A time zone: a rational multiple of 1/3600 between -24 and 24 that represents the

number of hours offset from GMT
daylight-savings-p A generalized boolean
position A index in string

Returns
Six values: second, minute, hour, time-zone, daylight-savings-p, and position

Errors

If junk-allowed is false, an error is signaled if a numeric field in string does not consist entirely of the
representation of a integer, possibly surrounded on either side by characters in separators.

Description

If no hour, minute, or second values are specified in string, they default to zero. The values returned
for time-zone and daylight-savings-p will be ni1 unless a time-zone is specified in string.

The returned position is the index within string where the parse ended.

See also

encode-date-and-time (page 168)
encode-time-of-day (page 171)

parse-date (page 181)
parse-date-and-time (page 184)
parse-duration (page 188)
parse-time (page 190)

GBBopen 1.5 Reference
190 3.4 Date and Time

parse-time

Examples

> (parse-—time
0

30

10

nil

nil

5

> (parse-time
0

30

22

nil

nil

(parse-time

5
>
0
30
10
4
t
9
>

(parse-time

> (parse-time

30
10
-
nil
11
>

"10

"lo

"lO

"10

"lo

GBBopen 1.5 Reference

3.4 Date and Time

:30™)

:30pm")

:30 EDT")

:30 IST")

:30 UTC-T7")

parse-time

191

pretty-duration seconds soptional maximum-fields destination = result [Function]
Purpose

Format a numeric time duration (in seconds) into descriptive text.

Packqge :gbbopen-tools

Module :gbbopen-tools

Arguments
seconds A number

maximum-fields An integer from 1-5 indicating maximum number of fields to include in the
descriptive string (default is 5, indicating all fields should be included)

destination Either nil, t, a stream, or a string with a fill pointer (default is ni1)
result A stringor nil
Returns

If destination is non-nil, then nil; otherwise, a string.

Description
The value of seconds is rounded to the nearest 100" of a second before conversion. Fields omitted by
maximum-fields cause appropriate rounding of the generated description.

See also

brief-duration (page 165)
brief-run-time-duration (page 167)
parse-duration (page 188)

pretty-run-time-duration (page 194)

Examples

> (pretty-duration 1000)

"16 minutes, 40 seconds"

> (pretty-duration -1000)

"minus 16 minutes, 40 seconds"

> (pretty-duration -1000.12345)

"minus 16 minutes, 40.12 seconds"

> (pretty-duration -1000.12543)

"minus 16 minutes, 40.13 seconds"

> (pretty-duration 166611.9)

"1l day, 22 hours, 16 minutes, 51.91 seconds"
> (pretty-duration 166611.9 4)

"l day, 22 hours, 16 minutes, 52 seconds”
> (pretty-duration 166611.9 3)

"1l day, 22 hours, 17 minutes"

> (pretty-duration 166611.9 2)

"l day, 22 hours"

> (pretty-duration 166611.9 1)

"2 days"

GBBopen 1.5 Reference
192 3.4 Date and Time

pretty-duration

> (pretty-duration 31556952)
"365 days, 5 hours, 49 minutes, 12 seconds"
>

pretty-duration

GBBopen 1.5 Reference
3.4 Date and Time 193

pretty-run-time-duration internal-time-units soptional maximum-fields destination [Function]
= result

Purpose
Format a run-time duration (in internal-time-units) into descriptive text.

Package :gbbopen-tools
Module :gbbopen-tools

Arguments
internal-time-units A number

maximum-fields An integer from 1-5 indicating maximum number of fields to include in the
descriptive string (default is 5, indicating all fields should be included)

destination Either nil, t, a stream, or a string with a fill pointer (default is ni1)
result A stringor nil
Returns

If destination is non-nil, then nil; otherwise, a string.

Description

The internal-time-units run-time duration is rounded to the nearest 100*" of a second before
conversion. Fields omitted by maximum-fields cause appropriate rounding of the generated
description.

See also
brief-duration (page 165)
brief-run-time-duration (page 167)
parse-duration (page 188)
pretty-duration (page 192)
Examples
> internal-time-units-per-second
1000

> (pretty-run-time-duration 1000)

"l second"

> (pretty-run-time-duration 5)

"0 seconds"

> (pretty-run—-time—-duration 6)

"0.01 seconds"

> most-positive-fixnum

536870911

> (pretty-run-time-duration most-positive-fixnum)
"6 days, 5 hours, 7 minutes, 50.94 seconds"
>

GBBopen 1.5 Reference
194 3.4 Date and Time

very-brief-date soptional universal-time skey time-zone month-precedes-date [Function]
year-first include-year separator destination = result

Purpose
Generate a very brief date description.

Package :gbbopen-tools
Module :gbbopen-tools

Arguments

universal-time A Universal Time (default is ni 1, which is equivalent to the value returned by
(get—universal-time))

time-zone A time zone (default is nil, which is equivalent to the current time zone adjusted for
daylight saving time)

month-precedes-date A generalized boolean (default is *month-precedes-date*)

year-first A generalized boolean (default is *year-first*)

include-year A generalized boolean (default is t)

separator A character (default is #\ /)

destination Either nil, t, a stream, or a string with a fill pointer (default is ni1)
result A stringor nil

Returns

If destination is non-nil, then nil; otherwise, a string.

Description

If universal-time is not supplied or is nil, the current time (as returned by get—universal-time is
used.

If time-zone is not supplied or is nil, it defaults to the current time zone adjusted for daylight saving
time. If time-zone is supplied, it is assumed to include any adjustment for daylight saving time.

If month-precedes-date is true, the month is presented in front of the date; otherwise the date
precedes the month.

If year-first is supplied and is non-nil, the year is presented in front of the month and date;
otherwise the year follows the month and date.

If include-year is supplied and is non-nil, the year is included in the presented time.

See also

month-precedes-date (page 158)
brief-date-and-time (page 163)
full-date-and-time (page 172)
http-date-and-time (page 176)
internet-text-date-and-time (page 177)
is08601-date-and-time (page 179)

message-log-date-and-time (page 180)

GBBopen 1.5 Reference
3.4 Date and Time 195

very-brief-date

Examples
Display the current date (with and without the year):
> (very-brief-date)
"2/16/2008"
> (very-brief-date (get-universal-time) :include-year nil)
"2/16"
>

very-brief-date

GBBopen 1.5 Reference
196 3.4 Date and Time

3.5 Offset Universal Time

Common Lisp has three time representations: Decoded Time, Universal Time, and Internal Time.
Universal Time (UT) allows specific points in time from the beginning of 1900 to be represented with
one-second resolution (ignoring leap seconds). The disadvantage of absolute Universal Time values is
that they are bignums in most Common Lisp implementations.

To reduce computation and storage requirements, a fourth time representation, Offset Universal Time
(OT), can be used. Offset Universal Time is Universal Time that is offset by an integer time-base
value so that the most often used Offset Universal Time values in an application are fixnums.

Nearly all Common Lisp implementations provide fixnums of at least 30 bits (34 years of time range)
or more, but CLISP on 32-bit machines provides only 25 bits (388 days). The ANSI standard requires
an implementation to provide fixnums with at least 16 bits (only 18 hours), but fortunately Common
Lisp implementations are considerably more generous!

When developing applications that must represent time values that exceed the fixnum range, it is
important to choose the best time-base offset value to reduce bignum costs. Of course, existing Offset
Universal Time values will appear shifted if the time-base offset value is changed.

GBBopen 1.5 Reference
3.5 Offset Universal Time 197

*ot-base™

Purpose

Holds the Offset Universal Time time-base value.
Package :gbbopen-tools

Module :gbbopen-tools

Value type An Offset Universal Time time-base value

Initial value Must be set by using set-ot-base

See also

check-ot-base (page 199)
ot2ut (page 200)
set-ot-base (page 202)
ut2ot (page 204)

198

[Variable]

GBBopen 1.5 Reference
3.5 Offset Universal Time

check-ot-base soptional suppress-warning = boolean [Function]

Purpose

Check if the current time can be represented as a fixnum given the current Offset Universal Time
time-base value.

Packqge :gbbopen-tools

Module :gbbopen-tools

Arguments

suppress-warning A generalized boolean (default is nil)
boolean A generalized boolean

Returns

True if the current time can be represented as a £ixnum Offset Universal Time value; nil otherwise.

Errors
The Offset Universal Time time-base value has not been set.

See also

ot-base (page 198)
ot2ut (page 200)
set-ot-base (page 202)
utZot (page 204)
Examples

Set the time base for Offset Universal Time to today and check:

> (set-ot-base)

3410655616

> (check-ot-base)
t

>

Set the time base for Offset Universal Time to January 1, 1900 and check:

> (set-ot-base 1 1 1900)

16777216

> (check-ot-base)

;7 Warning: The current time represented as an Offset~Universal~Time is not
a fixnum.

nil

> (check-ot-base "t)

nil

>

GBBopen 1.5 Reference
3.5 Offset Universal Time 199

ot2ut offset-universal-time = universal-time

Purpose
Convert an Offset Universal Time value to a Universal Time value.

Package :gbbopen-tools
Module :gbbopen-tools

Arguments
offset-universal-time An Offset Universal Time value
universal-time A Universal Time

Returns
The equivalent Universal Time value

Errors
The Offset Universal Time time-base value has not been set.

See also

ot-base (page 198)
check-ot-base (page 199)
ut2ot (page 204)
set-ot-base (page 202)

Example
> (set-ot-base 1 7 2007)
3409014016
> (ot2ut -15071348)
3393942668
>

REPL Note
The equivalent of:
(full-date—-and-time (ot2ut offset-universal-time)

:include-seconds 't
:destination *standard-outputx)

can be invoked using the REPL command : ot offset-universal-time.

200

[Function]

GBBopen 1.5 Reference
3.5 Offset Universal Time

printvot form™ = result™ [Macro]

Purpose

Assist debugging involving Offset Universal Time values by printing forms and the results of
evaluating them to »trace—output . Any form producing a single-valued integer result is assumed
to be an Offset Universal Time value and a convenient full-date-and-time format (including
seconds) is printed as the result value.

Package :gbbopen-tools
Module :gbbopen-tools

Arguments
forms An implicit progn of forms to be evaluated and printed
results The values returned by evaluating the last form that is not the keyword symbol : hr

Returns
The values returned by evaluating the last form that is not the keyword symbol : hr

Description
The following is performed for each form in forms:

e if the form is the keyword symbol :hr, a dashed separator line printed to *t race—output*

e if the form is a string (before evaluation), it is treated as a label and printed to
xtrace—output* without enclosing double-quote characters

e if the form is a self-evaluating object, it is printed to *trace—output

e otherwise, the form is printed to *t race-output , then the form is evaluated and the result
values are printed to *t race—output . Unlike printv, a single-valued integer result is
assumed to be an Offset Universal Time value and when that result is printed by printvot, it is
first converted to Universal Time and then to full-date-and-time format (including seconds).

See also
full-date-and-time (page 172)
printv (page 108)
Examples

> (printvot "PRINTVOV example" xot-basex (ut2ot) :hr)
;7 PRINTVOV example

HH *ot—-basex => "Oct 22 2117 04:40:32"

HH (ut20t) => "Jun 4 2008 13:51:08"

-15071348
>

GBBopen 1.5 Reference
3.5 Offset Universal Time 201

set-ot-base soptional date month year time-zone = ot-base [Function]

Purpose
Set the Offset Universal Time time-base value.

Packqge :gbbopen-tools

Module :gbbopen-tools

Arguments

date An integer between 1 and up to 31, inclusive, depending on the month and year or
nil, indicating the current date (default is ni1)

month An integer between 1 and 12, inclusive or nil, indicating the current month (default
isnil)

year An integer indicating the year A.D. or nil, indicating the current year (default is
nil); if the year integer is between 0 and 99, the “obvious” year is assumed.

time-zone A time zone: a rational multiple of 1/3600 between -24 and 24 that represents the

number of hours offset from GMT (default is zero)

Returns
The Offset Universal Time time-base value

Description

Without any arguments, set-ot-base sets the time-base value to the current date. Setting the time
base to the current date can be used in applications that do not need to represent historical dates and
that do not save or communicate Offset Universal Time values. However, setting the time base to a
specific date is recommended for most applications.

See also
*ot-base™ (page 198)
check-ot-base (page 199)
ot2ut (page 200)
ut2ot (page 204)
Examples

Set the time base for Offset Universal Time to today:

> (set-ot-base)
3436662016
>

Note that the returned Offset Universal Time time-base value (above) is not the current
Universal Time value:

> (get-universal-time)
3419947437
>

Set the time base for Offset Universal Time to July 1, 2007:

GBBopen 1.5 Reference
202 3.5 Offset Universal Time

set-ot-base

> (set-ot-base 1 7 2007)
3409014016
>

set-ot-base

GBBopen 1.5 Reference
3.5 Offset Universal Time 203

ut2ot soptional universal-time = offset-universal-time

Purpose
Convert a Universal Time value to an Offset Universal Time value.

Package :gbbopen-tools
Module :gbbopen-tools

Arguments

[Function]

universal-time A Universal Time value (default is the current Universal Time)

offset-universal-time An Offset Universal Time value

Returns

The equivalent Offset Universal Time value

Errors

The Offset Universal Time time-base value has not been set.
See also

ot-base (page 198)

check-ot-base (page 199)

ot2ut (page 200)

set-ot-base (page 202)

Examples
codeindexitmultiple-value-callcodeindexitencode-universal-time

> (set-ot-base 1 7 2007)
3409014016

> (ut2ot)

-15071348

> (ut2o0t 3393942668)
-15071348

> (ut2o0t (multiple-value-call #’encode-universal-time

;; noon on the Fourth of July, 2008:
0 0 12 (parse-date "July 4, 2008")))
15161984
>

204

GBBopen 1.5 Reference
3.5 Offset Universal Time

3.6 Transitioning Sets and Tables

Ideally, native Common Lisp hash tables operations should always be very fast. On some Common
Lisp implementations, however, a small amount of time (and space) can be saved by using list-based
representations for hash tables with small entry counts. These list-based representations transition
automatically to regular hash tables as the entry count grows beyond the performance-advantage
threshold (and back to the list representation as the count shrinks). These auto-transitioning
representations add a small overhead to normal hash table operations, so their use should be
considered very carefully (and restricted to situations where the counts tend to remain low).

ESETs

An ESET (short for eg-set) is a keys-only table that automatically transitions between list and
hash-table implementations. The keys are used to represent elements of the ESET and are compared
using eq.

ETs

An ET (short for eg-table) is a key-and-value table that automatically transitions between list and
hash-table implementations. The keys are compared using eq.

add-to-eset item eset = item [Function]

Purpose
Add item to eset if it is not already present using eq as the comparison function.
Package :gbbopen-tools

Module :gbbopen-tools

Arguments
item An object
eset An ESET

Returns

The item

See also

in-eset (page 211)
make-eset (page 212)

delete-from-eset (page 207)

Examples

> (defparameter *esetx (make-eset))
*eset

> (in-eset ’"x xesetx)

nil

nil

GBBopen 1.5 Reference
3.6 Transitioning Sets and Tables 205

add-to-eset

> (add-to-eset ’"x xesetx)
X
> (in-eset 'x xesetx)
b4
t
> (in—eset nil xeset=x)
nil
nil
> (add-to-eset nil xesetx)
nil
> (in—eset nil xeset=x)
nil
t
>
add-to-eset

GBBopen 1.5 Reference
206 3.6 Transitioning Sets and Tables

delete-from-eset item eset = deleted-p [Function]
Purpose

Delete item from eset if it is present using eq as the comparison function.

Package :gbbopen-tools

Module :gbbopen-tools

Arguments

item An object

eset An ESET

deleted-p A generalized boolean

Returns
True, if item was deleted from eset; nil otherwise

See also
add-to-eset (page 205)
in-eset (page 211)

make-eset (page 212)

Examples
> (defparameter *esetx (make-eset))
*eset
> (add-to—-eset ’"x xesetx)
X
> (in—eset ’"x *esetx)
X
t
> (delete—from-eset ’'x *esetx)
t
> (in—eset "X xesetx)
nil
nil
> (delete—from-eset ’'x xesetx)
nil
>

GBBopen 1.5 Reference
3.6 Transitioning Sets and Tables 207

delete-et item et = deleted-p

Purpose

Delete item from et if it is present using eq as the comparison function.

Package :gbbopen-tools

Module :gbbopen-tools

Arguments
item An object
et An ET

deleted-p A generalized boolean

Returns
True, if item was deleted from et; nil otherwise

See also

get-et (page 209)
make-et (page 213)

Examples

> (defparameter x*etx (make-et))
*et
(setf (get—-et ’'x xetx) 3)

(get—et "x xetx)

>
3
>
3
t
> (delete—et ’'x x*etx)
t

> (get-et ’'x xetx)
nil

nil

> (delete—et ’'x xetx)
nil

>

[Function]

GBBopen 1.5 Reference

208 3.6 Transitioning Sets and Tables

get-et key et coptional default = value, present-p [Function]

Purpose
Return the value associated with key in et using eq as the key-comparison function.

Setf syntax
(setf (get-et key et coptional default) value) = value

Packqge :gbbopen-tools

Module :gbbopen-tools

Arguments
key An object
et AnET

value An object
present-p A generalized boolean

Returns
Two values:

e The value associated with the given key or default if no entry is associated with key

e True, if an entry was found; ni1 if there is no such entry

When set £ is used with get-et, the supplied value is returned as a single value.

Description
Set f may be used with get-et to replace the value associated with the given key, or to add a new

entry. When a get-et form is used as a setf place, any default which is supplied is evaluated, but its
value is ignored.

See also

make-et (page 213)
assq (page 66)
delete-et (page 208)

Examples

> (defparameter *ex (make-et))
xet

> (get-et 'x xetx)

nil

nil

> (get-et 'x xet* ':missing)
:missing

nil

> (setf (get—-et ’"x xetx) 1)
1

> (get—-et ’'x xetx)

GBBopen 1.5 Reference
3.6 Transitioning Sets and Tables 209

get-et

1

t

> (get-et nil xetx)
nil

nil

> (setf (get—-et nil xetx) nil)
nil

> (get-et nil xetx)
nil

t

>

get-et

GBBopen 1.5 Reference
210 3.6 Transitioning Sets and Tables

in-eset item eset = item-or-nil, present-p

Purpose

Determine if item is in eset using eq as the comparison function.

Package :gbbopen-tools

Module :gbbopen-tools

Arguments
item An object
eset An ESET

item-or-nil An object or nil

present-p A generalized boolean

Returns
Two values:

e item, if item is a member of eset; otherwise nil
e True, if an entry was found; ni1l if there is no such entry

See also

add-to-eset (page
make-eset (page
memgq (page

delete-from-eset (page

Examples

> (defparameter xesetx

*eset

> (in-eset ’"x xesetx)

nil

nil

> (add-to—eset "x xesetx)
b4

> (in—eset ’"x xesetx)

X

t

> (in—eset nil xesetx)
nil

nil

> (add-to-eset nil xesetx)
nil

> (in—eset nil xesetx*)
nil

t

>

GBBopen 1.5 Reference

3.6 Transitioning Sets and Tables

205)
212)
102)
207)

(make—-eset))

[Function]

211

make-eset <no arguments>=- eset

Purpose
Create an empty ESET.
Package :gbbopen-tools

Module :gbbopen-tools

Arguments
eset An ESET

Returns

An empty ESET

See also

add-to-eset (page 205)
in-eset (page 211)

delete-from-eset (page 207)

Examples

> (make-eset)
(0)
>

212

[Function]

GBBopen 1.5 Reference
3.6 Transitioning Sets and Tables

make-et <no arguments>=- et
Purpose

Create an empty ET.
Package :gbbopen-tools
Module :gbbopen-tools

Arguments
et An ET

Returns
An empty ET

See also

get-et (page 209)
delete-et (page 208)

Examples
> (make-et)

(0)
>

GBBopen 1.5 Reference

3.6 Transitioning Sets and Tables

[Function]

213

3.7 Search Trees

A red-black tree is binary search tree that is roughly balanced, keeping the worst-case time values for
operations such as inserting, deleting, and searching proportional to the height of the tree.
Left-leaning red-black (LLRB) trees are a simpler version of red-black trees in which all red links
must “lean” left except during inserts and deletes. LLRB trees have good worst-case running time for
their operations and are efficient in general use.

GBBopen 1.5 Reference
214 3.7 Search Trees

llrb-tree-count lirb-tree = count

Purpose

Return number of entries stored in lirb-tree.

Package :gbbopen-tools
Module :gbbopen-tools

Arguments
llrb-tree An LLRB tree
count A non-negative integer

Returns
The number of entries stored in llrb-tree

See also
llrb-tree-delete (page 216)
llrb-tree-p (page 217)

llrb-tree-test (page 218)
llrb-tree-value (page 219)
make-llrb-tree (page 221)
map-llrb-tree (page 222)

Example
> (llrb-tree-count =*treex)
3
>

GBBopen 1.5 Reference
3.7 Search Trees

[Function]

215

llrb-tree-delete key lirb-tree = deleted-p [Function]

Purpose
Delete the entry associated with a given key.

Package :gbbopen-tools
Module :gbbopen-tools

Arguments

key An object

lirb-tree An LLRB tree
deleted-p A generalized boolean

Returns
True if the entry was deleted; nil if it was not found

See also

llrb-tree-count (page 215)
llrb-tree-p (page 217)
llrb-tree-test (page 218)
llrb-tree-value (page 219)
make-llrb-tree (page 221)
map-llrb-tree (page 222)

Example
Delete the entry stored under 1 in the LLRB-tree xt ree~, then try deleting it a second time:

> (llrb-tree—delete 1 xtreex)
t

> (llrb-tree-delete 1 *treex)
nil

GBBopen 1.5 Reference
216 3.7 Search Trees

llrb-tree-p object = boolean

Purpose

Determine if an object is an LLRB tree.

Package :gbbopen-tools
Module :gbbopen-tools

Arguments
object An object
boolean A generalized boolean

Returns

True if object is an LLRB tree; nil otherwise.

See also

llrb-tree-count (page 215)
llrb-tree-delete (page 216)
llrb-tree-test (page 218)
llrb-tree-value (page 219)
make-llrb-tree (page 221)
map-llrb-tree (page 222)

Example
> (llrb-tree-p xtreex)
t
>

GBBopen 1.5 Reference
3.7 Search Trees

[Function]

217

llrb-tree-test llrb-tree = comparison-test

Purpose

Return the three-way comparison test function used in Illrb-tree.

Package :gbbopen-tools
Module :gbbopen-tools

Arguments
lirb-tree An LLRB tree

[Function]

comparison-test A function designator specifying the three-way comparison test function object used

in lirb-tree

Returns
The comparison test used in llrb-tree

See also

llrb-tree-count (page 215)
llrb-tree-delete (page 216)
llrb-tree-p (page 217)
llrb-tree-value (page 219)
make-llrb-tree (page 221)
map-llrb-tree (page 222)

Example

> (llrb-tree-test x*treex)
compares&
>

218

GBBopen 1.5 Reference
3.7 Search Trees

llrb-tree-value key llrb-tree soptional default = value, present-p

Purpose
Return the value associated with a given key.

Sefif syntax

(setf (llrb-tree-value key llrb-tree soptional default) value) = value
value, present-p

Package :gbbopen-tools
Module :gbbopen-tools

Arguments

key An object

lirb-tree An LLRB tree

default An object (default is nil)
value An object

present-p A generalized boolean

Returns
Two values:

e The value associated with the given key or default if no entry is associated with key

e True, if an entry was found; nil if there is no such entry

Description

[Function]

Set f may be used with llrb-tree-value to replace the value associated with the given key, or to add
a new entry. When a llrb-tree-value form is used as a setf place, any default which is supplied is

evaluated, but its value is ignored.

See also

llrb-tree-count (page 215)
llrb-tree-delete (page 216)
llrb-tree-p (page 217)
llrb-tree-test (page 218)
make-llrb-tree (page 221)
map-llrb-tree (page 222)

Example

> (defparameter *treex (make-llrb-tree #’compares&))
*treex

> (llrb-tree-value 1 xtreex)

nil

> (setf (llrb-tree-value 1 xtreex) ’a)

a

> (llrb-tree-value 1 xtreex)

GBBopen 1.5 Reference
3.7 Search Trees

219

llrb-tree-value

t

llrb-tree-value

GBBopen 1.5 Reference
220 3.7 Search Trees

make-llrb-tree comparison-test = llrb-tree

Purpose
Create an empty left-leaning red-black tree.

Package :gbbopen-tools

Module :gbbopen-tools

Arguments

comparison-test A three-way comparison test
lirb-tree An LLRB tree

Returns

An empty left-leaning red-black tree

See also

llrb-tree-count (page 215)
llrb-tree-delete (page 216)
llrb-tree-p (page 217)
llrb-tree-test (page 218)
llrb-tree-value (page 219)
map-llrb-tree (page 222)

Example

> (make-llrb-tree #’compare&)
#<compare& llrb-tree with 0 entries>
>

GBBopen 1.5 Reference
3.7 Search Trees

[Function]

221

map-llrb-tree function llrb-tree

Purpose

Apply a function once to the key and value of each entry in an LLRB tree.
Package :gbbopen-tools

Module :gbbopen-tools

[Function]

Arguments

function A function designator specifying a function object of two arguments
lirb-tree An LLRB tree

See also

llrb-tree-count (page
llrb-tree-delete (page
llrb-tree-p (page
llrb-tree-test (page
llrb-tree-value (page
make-llrb-tree (page

Example
> (map-llrb-tree

#’ (lambda (key value)
(printv key value))

*treex)
HY key => 1
;7 value => a
ii key => 2
;; value => Db
;7 key => 3
;5 value => c

222

215)
216)
217)
218)
219)
221)

GBBopen 1.5 Reference
3.7 Search Trees

4 Additional GBBopen Tools

Additional GBBopen Tool entities are grouped into modules that can be loaded as appropriate.
Documentation for these additional-tool entities is arranged according to the following modules:

e uniform interfaces to implementation-specific thread (multiprocessing) capabilities are provided
by the :portable-threads module (see page 224)

e polling functions for Common Lisp implementations that do not provide thread capabilities are
provided by the :polling-functions module (see page 298)

e uniform socket interfaces are provided by the :portable—sockets module (see page 304)

e uniform interfaces to the operating system are provided by the :os-interface module (see
page 317)

e Double Metaphone phonetic-code computation is provided by the : double-metaphone module
(see page 315) module.

GBBopen 1.5 Reference
4 Additional GBBopen Tools 223

4.1 Portable Threads

GBBopen’s Portable Threads provides a uniform interface to commonly used thread (multiprocessing)
entities. Wherever possible, these entities do something reasonable in Common Lisp implementations
that do not provide threads. However, entities that make no sense without threads signal errors in
non-threaded implementations (as noted with each entity). The feature : threads—not—-available
is added on Common Lisp implementations without thread support, and the feature
:with-timeout-not—-available is added on implementations that do not support with-timeout.

Portable Threads entities are provided by the :portable-threads module in GBBopen. Stand-alone
use of the Portable Threads interface is also easy, requiring only the portable-threads.1isp file
for the portable-interface layer and, if desired, scheduled-periodic-functions.lisp for the
scheduled and periodic function entities (see page 268).

Threads and Processes
Common Lisp implementations that provide multiprocessing capabilities use one of two approaches:

e Application-level threads (also called “Lisp processes”) which are created, deleted, and scheduled
internally by the Common Lisp implementation

e Operating-system threads (or “native threads”) which are lightweight, operating-system threads
that are created, deleted, and scheduled by the operating system

There are advantages and complexities associated with each approach, and the Portable Threads
Interface is designed to provide a uniform abstraction over them that can be used to code applications
that perform consistently and efficiently on any supported Common Lisp implementation.

Locks

Common Lisp implementations provide differing semantics for the behavior of mutual-exclusion locks
that are acquired recursively by the same thread: some always allow recursive use, others provide
special “recursive” lock objects in addition to non-recursive locks, and still others allow recursive use
to be specified at the time that a lock is being acquired. To enable behavioral consistency in all
Common Lisp implementations, the :portable-threads interface module provides (non-recursive)
locks and recursive locks and a single acquisition form, with-lock-held, that behaves appropriately
for each lock type.

Condition Variables

POSIX-style condition variables provide an atomic means for a thread to release a lock that it holds
and go to sleep until it is awakened by another thread. Once awakened, the lock that it was holding is
reacquired atomically before the thread is allowed to do anything else.

A condition variable must always be associated with a lock (or recursive lock) in order to avoid a race
condition created when one thread signals a condition while another thread is preparing to wait on it.
In this situation, the second thread would be perpetually waiting for the signal that has already been
sent. In the POSIX model, there is no explicit link between the lock used to control access to the
condition variable and the condition variable. The Portable Threads Interface makes this association
explicit by bundling the lock with the condition-variable CLOS object instance and allowing the
condition-variable object to be used directly in lock entities.

Hibernation

GBBopen 1.5 Reference
224 4.1 Portable Threads

http://gbbopen.org/svn/GBBopen/trunk/source/tools/portable-threads.lisp
http://gbbopen.org/svn/GBBopen/trunk/source/tools/scheduled-periodic-functions.lisp

Sometimes it is desirable to put a thread to sleep (perhaps for a long time) until some event has
occurred. The Portable Threads Interface provides two entities that make this situation easy to code:
hibernate-thread and awaken-thread. Thread hibernation can only be performed by the thread on
itself, eliminating issues of a thread being hibernated at an undesirable time. Note that there is the
potential for a hibernate/awaken race condition if a thread hibernates itself again soon after being
awakened (when a second awaken-thread intended for the original hiberation is applied to the
second hibernation rather than being ignored because the target thread is not hibernating). Using a
condition-variable is preferable in this situation.

When a thread is hibernating, it remains available to respond to run-in-thread and
symbol-value-in-thread operations as well as to be awakened by a dynamically surrounding
with-timeout.

What about Process Wait?

Thread coordination functions, such as process—-wait, are expensive to implement with
operating-system threads. Such functions stop the executing thread until a Common Lisp

predicate function returns a true value. With application-level threads, the Lisp-based scheduler
evaluates the predicate function periodically when looking for other threads that can be run. With
operating-system threads, however, thread scheduling is performed by the operating system and
evaluating a Common Lisp predicate function requires complex and expensive interaction between
the operating-system thread scheduling and the Common Lisp implementation. Given this cost and
complexity, many Common Lisp implementations that use operating-system threads have elected not
to provide process-wait-style coordination functions, and this issue extends to the Portable
Threads Interface as well.

Fortunately, most uses of process—wait can be replaced by a different strategy that relies on the
producer of a change that would affect the process-wait predicate function to signal the event
rather than having the consumers of the change use predicate functions to poll for it. Condition
variables, the Portable Threads hibernate-thread and awaken-thread mechanism, or blocking I/0
functions cover most of the typical uses of process-wait.

Portable Threads entities
Descriptions of the Portable Threads entities follow.

GBBopen 1.5 Reference
4.1 Portable Threads 225

all-threads <no arguments> = list-of-threads [Function]

Purpose
Return a list of all known threads.

Package :portable-threads
Module :portable-threads

Arguments
list-of-threads A proper list

Returns
A list of objects representing the threads.

Description

The returned list of threads is accurate only at the precise instant the all-threads function is called.
New threads may be created or existing threads killed at any time, so the returned list is always
potentially outdated.

See also

current-thread (page 244)
thread-alive-p (page 257)
threadp (page 261)
spawn-form (page 254)
spawn-thread (page 255)

Example

> (all-threads)
(#<thread Listener 1>)
>

Notes
On Common Lisp implementations without threads, nil is returned.

The returned list of threads should not be destructively altered.

GBBopen 1.5 Reference
226 4.1 Portable Threads

. . ES .
as-atomic-operation form™ = primary-value

Purpose

Execute forms as an atomic operation.

Package :portable-threads

Module :portable-threads

Arguments

primary-value The first value returned by evaluating the last form

Returns

The primary value returned by evaluating the last form.

Description

[Macro]

This macro provides atomicity in the following entities (when the Common Lisp implementation does

not support them directly): atomic-decf, atomic-decf&, atomic-delete, atomic-flush,

atomic-incf, atomic-incf&, atomic-push, atomic-pushnew, and atomic-pop. It is intended only
for implementing very brief atomic operations and should not be used for long computations or

computations that wait or block.

Note that as-atomic-operation is only guaranteed to return a single value, not multiple values.

See also

atomic-decf (page
atomic-decf& (page
atomic-delete (page
atomic-flush (page
atomic-incf (page
atomic-incf& (page
atomic-push (page
atomic-pushnew (page
atomic-pop (page
Example

228)
229)
230)
232)
233)
234)
236)
237)
235)

Define an atomic nsorted-insert:

(defun atomic-nsorted-insert (&rest args)
(declare (dynamic-extent args))
(as—atomic-operation

GBBopen 1.5 Reference
4.1 Portable Threads

(apply #’'nsorted-insert args)))

227

atomic-decf place [delta-form] = new-place-value

Purpose

Decrement the value stored in place as an atomic operation.

Package :portable-threads

Module :portable-threads

Arguments

place A form which is suitable for use as a generalized reference
delta-form A form that is evaluated to produce a delta value (default is 1)

new-place-value A number

Returns
The new value of place.

See also

as-atomic-operation (page
atomic-decf& (page
atomic-delete (page
atomic-flush (page
atomic-incf (page
atomic-incf& (page
atomic-pop (page
atomic-pushnew (page
Examples

> X

5

> (atomic-decf x)

4

> (atomic-decf x 1.5)

2.5

>

228

227)
229)
230)
232)
233)
234)
235)
237)

[Macro]

GBBopen 1.5 Reference
4.1 Portable Threads

atomic-decf& place [delta-form] = new-place-value

Purpose

Decrement the fixnum value stored in place as an atomic operation.

Package :portable-threads

Module :portable-threads

Arguments

place A form which is suitable for use as a generalized reference containing a fixnum value
delta-form A form that is evaluated to produce a fixnum delta value (default is 1)

new-place-value A fixnum

Returns

The new fixnum value of place.

See also
as-atomic-operation (page
atomic-decf (page
atomic-delete (page
atomic-flush (page
atomic-incf (page
atomic-incf& (page
atomic-pop (page
atomic-pushnew (page
Examples

> X

5

(atomic—-decfé& x)

>
4
> (atomic-decf& x 2)
2
>

GBBopen 1.5 Reference
4.1 Portable Threads

227)
228)
230)
232)
233)
234)
235)
237)

[Macro]

229

atomic-delete item place skey from-end test test-not start end count key = sequence [Macro]

Purpose
As an atomic operation, set place to the sequence in place from which the elements that satisfy the
test have been removed.

Package :portable-threads

Module :portable-threads

Arguments
item An object
place A form which is suitable for use as a generalized reference that contains a proper sequence

from-end A generalized boolean (default is nil)

test A function designator specifying a function object of two arguments that returns a
generalized boolean (default is #’ eql)

test-not A function designator specifying a function object of two arguments that returns a
generalized boolean (use of : test-not is deprecated)

start Starting index into sequence (default is 0)

end Ending index into sequence (default is nil, meaning end of sequence)

count An integer or nil (defaultis nil)

key A function designator specifying a function object of one argument, or nil (default is nil)

sequence A sequence

Returns
The sequence in place from which the elements that satisfy the test have been removed.

Description

Replaces place with the sequence in place from which elements that satisfy the test have been
deleted. The supplied place sequence may be modified in constructing the result; however,
modification of the sequence itself is not guaranteed.

Specifying a from-end value of true matters only when the count is provided, and in that case only
the rightmost count elements satisfying the test are deleted.

See also

as-atomic-operation (page 227)
atomic-flush (page 232)
atomic-pop (page 235)
atomic-push (page 236)
atomic-pushnew (page 237)
counted-delete (page 75)
delq (page 80)
delg-one (page 81)

GBBopen 1.5 Reference
230 4.1 Portable Threads

atomic-delete

Example

> list

(1 2 3)

> (atomic-delete 2 list)
(2 3)
> list
(2 3)
>

atomic-delete

GBBopen 1.5 Reference
4.1 Portable Threads 231

atomic-flush place = old-place-value [Macrol]

Purpose

As an atomic operation, set the value of place to nil, and return the value place had prior to being
set.

Package :portable-threads
Module :portable-threads

Arguments
place A form which is suitable for use as a generalized reference
old-place-value An object

Returns
The place value prior to being set to ni1l.
See also
as-atomic-operation (page 227)
atomic-delete (page 230)
atomic-pop (page 235)
atomic-push (page 236)
atomic-pushnew (page 237)
Example

> list

(L 2 3)

> (atomic-flush list)

(1 2 3)

> list

nil

>

GBBopen 1.5 Reference
232 4.1 Portable Threads

atomic-incf place [delta-form] = new-place-value

Purpose

Increment the value stored in place as an atomic operation.

Package :portable-threads

Module :portable-threads

Arguments

place A form which is suitable for use as a generalized reference
A form that is evaluated to produce a delta value (default is 1)

delta-form

new-place-value A number

Returns
The new value of place.

See also

as-atomic-operation
atomic-decf
atomic-decf&
atomic-delete
atomic-flush
atomic-incf&
atomic-pop
atomic-pushnew

Examples

> x
(atomic—-incf x

(atomic—incf x
.5

vV iV WV DN

GBBopen 1.5 Reference
4.1 Portable Threads

(page
(page
(page
(page
(page
(page
(page
(page

)

1.5)

227)
228)
229)
230)
232)
234)
235)
237)

[Macro]

233

atomic-incf& place [delta-form] = new-place-value

Purpose

Increment the fixnum value stored in place as an atomic operation.

Package :portable-threads

Module :portable-threads

Arguments

[Macro]

place A form which is suitable for use as a generalized reference containing a fixnum value
delta-form A form that is evaluated to produce a fixnum delta value (default is 1)

new-place-value A fixnum

Returns

The new fixnum value of place.

See also
as-atomic-operation (page
atomic-decf (page
atomic-decf& (page
atomic-delete (page
atomic-flush (page
atomic-incf (page
atomic-pop (page
atomic-pushnew (page
Examples

> X

2

(atomic—-incfé& x)

>
3
> (atomic—-incf& x 2)
5
>

234

227)
228)
229)
230)
232)
233)
235)
237)

GBBopen 1.5 Reference
4.1 Portable Threads

atomic-pop place = element [Macrol]

Purpose

As an atomic operation, remove the first element from the list stored in place, store the updated list
in place, and return the removed first element.

Package :portable-threads

Module :portable-threads

Arguments
place A form which is suitable for use as a generalized reference that contains a proper list or a
dotted list

element An object

Returns
The first element (the car) of the list stored in place.
See also
as-atomic-operation (page 227)
atomic-delete (page 230)
atomic-flush (page 232)
atomic-push (page 236)
atomic-pushnew (page 237)
Example

> list

(1 2 3)

> (atomic-pop list)

1

> list

(2 3)

>

GBBopen 1.5 Reference
4.1 Portable Threads 235

atomic-push item place = new-place-value [Macrol]

Purpose
As an atomic operation, prepend item to the list stored in place and store the updated list in place.

Package :portable-threads

Module :portable-threads

Arguments
item An object
place A form which is suitable for use as a generalized reference

new-place-value A proper list

Returns
The new value of place.

See also
as-atomic-operation (page 227)
atomic-delete (page 230)
atomic-flush (page 232)
atomic-pop (page 235)
atomic-pushnew (page 237)
Example

> list

(1 2 3)

> (atomic-push 10 list)

(10 1 2 3)

>

GBBopen 1.5 Reference
236 4.1 Portable Threads

atomic-pushnew item place skey key test test-not = new-place-value [Macrol]

Purpose

As an atomic operation, when item is not the same as any element in the list stored in place, prepend
item to the list and store the updated list in place.

Package :portable-threads

Module :portable-threads

Arguments

item An object

place A form which is suitable for use as a generalized reference that contains a proper list

key A function designator specifying a function object of one argument, or ni1 (default
isnil)

test A function designator specifying a function object of two arguments that returns a
generalized boolean (default is #’ eql)

test-not A function designator specifying a function object of two arguments that returns a

generalized boolean (use of :test-not is deprecated)
new-place-value A proper list

Returns
The new value of place.
See also
as-atomic-operation (page 227)
atomic-delete (page 230)
atomic-flush (page 232)
atomic-pop (page 235)
atomic-push (page 236)
Examples
> list
(1 2 3)
> (atomic-pushnew 2 list)
(1 2 3)
> (atomic-pushnew 10 list)
(10 1 2 3)
>

GBBopen 1.5 Reference
4.1 Portable Threads 237

awaken-thread thread [Function]
Purpose

Awaken a hibernating thread.

Package :portable-threads

Module :portable-threads

Arguments
thread A thread

Errors
Threads (multiprocessing) is not supported on the Common Lisp implementation.

Description
An attempt to awaken a non-hibernating thread is ignored.

See also

hibernate-thread (page 245)

Example
(awaken—-thread thread)

GBBopen 1.5 Reference
238 4.1 Portable Threads

condition-variable [Class]

Package :portable-threads
Module :portable-threads

Description
The class condition-variable is a subclass of standard-object. Instances of condition-variable
include an associated lock, which can be either a lock (the default) or a recursive lock.

See also
make-condition-variable (page 247)
define-class (page 83)

GBBopen 1.5 Reference
4.1 Portable Threads 239

condition-variable-broadcast condition-variable [Function]

Purpose
Unblock all threads that are blocked on condition-variable.
Package :portable-threads

Module :portable-threads

Arguments
condition-variable A condition variable

Errors
The lock (or recursive lock) associated with condition-variable is not held by the executing process.

Description

If no threads are blocked on condition-variable, this function is a no-op.
See also

condition-variable-signal (page 241)
condition-variable-wait (page 242)
condition-variable-wait-with-timeout (page 243)
make-condition-variable (page 247)

with-lock-held (page 263)
without-lock-held (page 267)

Example

Acquire the lock associated with condition-variable and then signal all blocked threads that are
waiting on it:

(with—-lock-held (condition—-variable)
(condition-variable-broadcast condition-variable))

Note
On Common Lisp implementations without threads, this function does nothing.

GBBopen 1.5 Reference
240 4.1 Portable Threads

condition-variable-signal condition-variable [Function]

Purpose
Unblock one thread that is blocked on condition-variable.
Package :portable-threads

Module :portable-threads

Arguments
condition-variable A condition variable

Errors
The lock (or recursive lock) associated with condition-variable is not held by the executing process.

Description

If no threads are blocked on condition-variable, this function is a no-op.
See also

condition-variable-broadcast (page 240)
condition-variable-wait (page 242)
condition-variable-wait-with-timeout (page 243)
make-condition-variable (page 247)

with-lock-held (page 263)
without-lock-held (page 267)

Example

Acquire the lock associated with condition-variable and then signal one blocked thread that is
waiting on it:

(with—-lock-held (condition—-variable)
(condition-variable-signal condition-variable))

Note
On Common Lisp implementations without threads, this function does nothing.

GBBopen 1.5 Reference
4.1 Portable Threads 241

condition-variable-wait condition-variable

Purpose
Block the current thread on condition-variable.

Package :portable-threads
Module :portable-threads

Arguments
condition-variable A condition variable

Errors

[Function]

The lock (or recursive lock) associated with condition-variable is not held by the executing process.

Threads (multiprocessing) is not supported on the Common Lisp implementation.

See also

condition-variable-broadcast (page
condition-variable-signal (page
condition-variable-wait-with-timeout (page
make-condition-variable (page
with-lock-held (page
without-lock-held (page
Example

240)
241)
243)
247)
263)
267)

Acquire the condition-variable lock and then wait until signaled by another thread:

(with—-lock-held (condition-variable)
(condition-variable-wait condition-variable))

242

GBBopen 1.5 Reference
4.1 Portable Threads

condition-variable-wait-with-timeout condition-variable seconds = boolean [Function]

Purpose
Block the current thread on condition-variable or until seconds seconds have elapsed.

Package :portable-threads

Module :portable-threads

Arguments

condition-variable A condition variable
seconds A number

boolean A generalized boolean
Returns

True if condition-variable is unblocked before seconds seconds have elapsed; nil if the timeout has
occurred.

Errors
The lock (or recursive lock) associated with condition-variable is not held by the executing process.

Threads (multiprocessing) is not supported on the Common Lisp implementation.

See also

condition-variable-broadcast (page 240)
condition-variable-signal (page 241)

condition-variable-wait (page 242)
make-condition-variable (page 247)
with-lock-held (page 263)
without-lock-held (page 267)
Example

Acquire the condition-variable lock and then wait until signaled by another thread or until 5 seconds
have elapsed:

(with—-lock—-held (condition-variable)
(condition-variable-wait-with-timeout condition-variable 5))

GBBopen 1.5 Reference
4.1 Portable Threads 243

current-thread <no arguments> =- thread [Function]

Purpose
Return the object representing the current thread.

Package :portable-threads
Module :portable-threads

Arguments
thread A thread

Returns
The object representing the current thread.

See also

all-threads (page 226)
spawn-form (page 254)
spawn-thread (page 255)

Example

> (current-thread)
f<thread Listener 1>
>

Note

On Common Lisp implementations without threads, the keyword symbol
:threads-not-available is returned.

GBBopen 1.5 Reference
244 4.1 Portable Threads

hibernate-thread <no arguments> [Function]
Purpose

Hibernate the current thread.

Package :portable-threads

Module :portable-threads

Errors

Threads (multiprocessing) is not supported on the Common Lisp implementation.
See also

awaken-thread (page 238)

Example
Hibernate the current thread:

(hibernate-thread)

GBBopen 1.5 Reference
4.1 Portable Threads 245

kill-thread thread [Function]
Purpose

Kill a thread.

Package :portable-threads

Module :portable-threads

Arguments
thread A thread

Errors
Threads (multiprocessing) is not supported on the Common Lisp implementation.

See also

spawn-form (page 254)
spawn-thread (page 255)
thread-alive-p (page 257)

Example
(kill-thread thread)

GBBopen 1.5 Reference
246 4.1 Portable Threads

make-condition-variable srest initargs skey class lock = condition-variable [Function]

Purpose
Create a new condition variable.

Packqge :portable—-threads

Module :portable-threads

Arguments

initargs An initialization argument list

class The name of the class for the created condition-variable instance (default is
condition-variable)

lock A lock, a recursive lock, or a condition variable (default is a non-recursive lock)

condition-variable A condition variable

Returns

The created condition-variable.
See also

make-instance (page 364)
make-lock (page 249)
make-recursive-lock (page 250)
with-lock-held (page 263)

without-lock-held (page 267)

Examples
Make a condition-variable instance with a non-recursive lock:
> (make—-condition-variable)

#<condition-variable>
>

Make a condition-variable instance with a recursive lock:
> (make—-condition-variable :lock (make-recursive-lock))
#<condition-variable>
>

Define a subclass of condition-variable that includes a state slot:
(defclass state-cv (condition-variable)
((state :initarg :state
rinitform nil
raccessor state-of)))

and then create a state—-cv instance with a recursive lock:
> (make-condition-variable :class ’'state-cv
:lock (make-recursive-lock))
#<state-cv>
>

GBBopen 1.5 Reference
4.1 Portable Threads

247

make-condition-variable

Note
The make-condition-variable function is equivalent to using make-instance with the desired
class for the created condition-variable instance. However, using make-condition-variable is

preferable stylistically.

make-condition-variable

GBBopen 1.5 Reference

248 4.1 DPortable Threads

make-lock skey name = lock
Purpose

Create a lock.

Package :portable-threads
Module :portable-threads

Arguments
name A string.
lock Alock

Returns
The newly created lock.

See also

make-condition-variable (page 247)
make-recursive-lock (page 250)
thread-holds-lock-p (page 262)
with-lock-held (page 263)
without-lock-held (page 267)
Example

> (make-lock :name "Priority Queue")

#<lock Priority Queue>
>

Note

On Common Lisp implementations without threads, a “pseudo-lock” object is returned.

GBBopen 1.5 Reference
4.1 Portable Threads

[Function]

249

make-recursive-lock skey name = recursive-lock
Purpose

Create a recursive lock.

Package :portable-threads

Module :portable-threads

Arguments
name A string.
lock A recursive lock

Returns
The newly created recursive lock.

See also

make-condition-variable (page 247)
make-lock (page 249)
thread-holds-lock-p (page 262)
with-lock-held (page 263)
without-lock-held (page 267)
Example

> (make-recursive-lock :name "Priority Queue")

#<recursive-lock Priority Queue>
>

Note

[Function]

On Common Lisp implementations without threads, a “pseudo-recursive-lock” object is returned.

250

GBBopen 1.5 Reference
4.1 Portable Threads

nearly-forever-seconds

Purpose

The maximum number of seconds supported by sleep.

Package :portable-threads
Module :portable-threads

Value type A fixnum

Value Implementation dependent

See also

sleep-nearly-forever (page 253)

GBBopen 1.5 Reference
4.1 Portable Threads

[Constant]

251

run-in-thread thread function srest args
Purpose

Force thread to apply function to args.
Package :portable-threads
Module :portable-threads

Arguments

thread A thread

function A function designator
args Arguments to the function

Errors

[Function]

Threads (multiprocessing) is not supported on the Common Lisp implementation.

See also

spawn-form (page 254)
spawn-thread (page 255)

Example

(run—-in-thread thread

#’ (lambda (result)

result)

252

":exit result))

GBBopen 1.5 Reference
4.1 Portable Threads

sleep-nearly-forever soptional seconds [Function]

Purpose
A maximum-time-bounded sleep.

Package :portable-threads
Module :portable-threads

Arguments
seconds An integer (default is nearly-forever-seconds)

Description

Calls sleep with seconds or nearly-forever-seconds, whichever is less. Using
nearly-forever-seconds protects against exceeding the duration limit of the Common Lisp
implementation’s s1leep function for very long duration sleeping, by truncating the duration to
nearly-forever-seconds.

See also

nearly-forever-seconds (page 251)

Examples
> (sleep—nearly-forever) ; sleep for a very long time
> (sleep—nearly—-forever ; sleep as long as the above

(* 2 nearly-forever—-seconds))

GBBopen 1.5 Reference
4.1 Portable Threads 253

spawn-form form*= thread

Purpose
Evaluate forms in a new thread.

Package :portable-threads

Module :portable-threads

Arguments
form A form
thread A thread

Returns

The object representing the new thread.

Errors

[Macro]

Threads (multiprocessing) is not supported on the Common Lisp implementation.

See also

all-threads (page
awaken-thread (page
current-thread (page
hibernate-thread (page
kill-thread (page
spawn-thread (page
thread-alive-p (page
thread-name (page
thread-whostate (page
threadp (page
run-in-thread (page

symbol-value-in-thread (page

Example

> (spawn-form (sleep 60)
#<thread Form (sleep 60)
>

254

226)
238)
244)
245)
246)
255)
257)
258)
259)
261)
252)
256)

)
>

GBBopen 1.5 Reference
4.1 Portable Threads

spawn-thread name function srest args = thread

Purpose
Spawn a new thread.

Package :portable-threads
Module :portable-threads

Arguments

name A string

function A function designator
args Arguments to the function
thread A thread

Returns
The object representing the new thread.

Errors

Threads (multiprocessing) is not supported on the Common Lisp implementation.

See also

all-threads (page 226)
awaken-thread (page 238)
current-thread (page 244)
hibernate-thread (page 245)
kill-thread (page 246)
spawn-form (page 254)
thread-alive-p (page 257)
thread-name (page 258)
thread-whostate (page 259)
threadp (page 261)
run-in-thread (page 252)

symbol-value-in-thread (page 256)

Example

> (spawn-thread "Sleepy" #’sleep 60)
#<thread Sleepy>
>

GBBopen 1.5 Reference
4.1 Portable Threads

[Function]

255

symbol-value-in-thread symbol thread = object, boundp [Function]

Purpose
Return the value of symbol in a thread.

Package :portable-threads
Module :portable-threads

Arguments

symbol A symbol

thread A thread

object An object

boundp A generalized boolean

Returns
Two values:
e the value of symbol in thread or nil if no value is bound

e t if symbol is specially or globally bound in thread; otherwise nil

Description
The global symbol value is returned as the first value if no thread-local value is bound.

See also

spawn-form (page 254)
spawn-thread (page 255)

Examples

> (symbol-value-in-thread ’xxx thread)

33

t

> (symbol-value-in-thread ’'pi thread)
3.141592653589793d0
t
>

(symbol-value-in-thread ’xunboundx thread)
nil
nil
>

Note
On Common Lisp implementations without threads, this function obtains the global symbol value.

GBBopen 1.5 Reference
256 4.1 Portable Threads

thread-alive-p thread = boolean

Purpose
Determine if a thread is alive.

Package :portable-threads

Module :portable-threads

Arguments
thread A thread
boolean A generalized boolean

Returns
True if thread is alive; nil otherwise.

Errors

Threads (multiprocessing) is not supported on the Common Lisp implementation.

See also

all-threads (page 226)
kill-thread (page 246)
spawn-form (page 254)
spawn-thread (page 255)

Examples

>

(defparameter xsilly-threadx

x*silly—-threadx

> (thread-alive-p xsilly-threadx)
t

> (kill-thread xsilly-threadx)

t

> (thread-alive-p xsilly-threadx)
nil

>

GBBopen 1.5 Reference
4.1 Portable Threads

[Function]

(spawn-thread "Sleeper" ’"sleep 10000))

257

thread-name thread = name-string
Purpose
Return the name of a thread.

Seftf syntax
(setf (thread-name thread) name-string) = name-string

Package :portable-threads
Module :portable-threads

Arguments
thread A thread
name-string A string

Returns
The name of thread.

Errors

[Function]

Threads (multiprocessing) is not supported on the Common Lisp implementation.

See also

spawn-form (page 254)
spawn-thread (page 255)

Examples
> (thread—-name thread)
"Initial"
> (setf (thread-name thread) "Version 2")
"Version 2"
> (thread—-name thread)
"Version 2"
>

Note

Digitool’s Macintosh Common Lisp does not support changing the thread name via setf.

258

GBBopen 1.5 Reference
4.1 Portable Threads

http://www.digitool.com

thread-whostate thread = whostate [Function]

Purpose
Return a string that describes the current state of a thread.

Seftf syntax
(setf (thread-whostate thread) whostate) = whostate

Package :portable-threads
Module :portable-threads

Arguments
thread A thread
whostate A string or nil

Returns
The whostate string of the thread or ni1.

Errors
Threads (multiprocessing) is not supported on the Common Lisp implementation.

See also

spawn-form (page 254)
spawn-thread (page 255)
with-lock-held (page 263)
without-lock-held (page 267)

Example

> (thread-whostate thread)
"Running"
>

Note

Although the whostate value can provide helpful information when debugging, specific whostate
values and their meanings vary among Common Lisp implementations and should not be used
programmatically.

Only Allegro CL, Clozure CL, and Digitool’s Macintosh Common Lisp support user-settable
whostates; (setf whostate) is a no-op on other Common Lisp implementations.

GBBopen 1.5 Reference
4.1 Portable Threads 259

http://franz.com/products/allegrocl/
http://trac.clozure.com/ccl
http://www.digitool.com

thread-yield <no arguments> [Function]
Purpose

Give other threads a chance to execute.

Package :portable-threads

Module :portable-threads

Example
(thread-yield)

Note

On Common Lisp implementations without thread support, this function executes
run-polling-functions if the : polling-functions module has been loaded. Otherwise, it is a
no-op on non-threaded implementations.

GBBopen 1.5 Reference
260 4.1 Portable Threads

threadp object = boolean [Function]

Purpose
Check if object is an object representing a thread.

Package :portable-threads
Module :portable-threads

Arguments
object An object
boolean A generalized boolean

Returns
True if object is an object representing a thread; nil otherwise.

See also

all-threads (page 226)
spawn-form (page 254)
spawn-thread (page 255)
thread-alive-p (page 257)

Example
> (threadp (car (all-threads)))
t
>

GBBopen 1.5 Reference
4.1 Portable Threads 261

thread-holds-lock-p lock = boolean
Purpose

Determine if lock is held by the current thread.
Package :portable-threads
Module :portable-threads

Arguments
lock A lock, a recursive lock, or a condition variable
boolean A generalized boolean

Returns
True if the current thread holds lock; nil otherwise.

See also

make-condition-variable (page 247)
make-lock (page 249)
make-recursive-lock (page 250)
with-lock-held (page 263)
without-lock-held (page 267)
Examples

Two simple examples using a lock:

> (thread-holds—-lock-p lock)

nil

> (with-lock-held (lock)
(thread-holds-lock-p lock))

Two more simple examples using a condition variable:
> (thread-holds-lock-p condition-variable)
nil
> (with-lock-held (condition-variable)
(thread-holds-lock-p condition-variable))

262

[Function]

GBBopen 1.5 Reference
4.1 Portable Threads

with-lock-held (lock skey whostate) form™ = result® [Macro]

Purpose
After acquiring a lock or a recursive lock, execute forms and then release the lock.

Package :portable-threads
Module :portable-threads

Arguments

lock A lock, a recursive lock, or a condition variable
whostate A string (default "With Lock Held")

forms An implicit progn of forms to be evaluated
results The values returned by evaluating the last form

Returns
The values returned by evaluating the last form.

Errors
A thread attempts to re-acquire a (non-recursive) lock that it holds.

Description

If a thread executes a with-lock-held that is dynamically inside another with-lock-held involving
the same recursive lock, the inner with-lock-held simply proceeds as if it had acquired the lock.

See also

make-condition-variable (page 247)
make-lock (page 249)
make-recursive-lock (page 250)
thread-holds-lock-p (page 262)
thread-whostate (page 259)
without-lock-held (page 267)

Examples
Acquire the lock controlling access to a critical section of code:

(with-lock-held (lock :whostate "Waiting for Critical Lock")
(critical-section))

A silly example showing a recursive re-acquisition of a recursive lock:
(with-lock-held (recursive-lock :whostate "Waiting for Critical Lock")
(with-lock-held (recursive-lock :whostate "Again Waiting for Critical
Lock™)
(critical-section)))

Acquire the lock associated with condition-variable and then signal all blocked threads that are
waiting on it:
(with—-lock—-held (condition-variable)
(condition-variable-signal condition-variable))

GBBopen 1.5 Reference
4.1 Portable Threads 263

with-lock-held

Note
The whostate value is ignored by SBCL.

with-lock-held

GBBopen 1.5 Reference
264 4.1 Portable Threads

http://sbcl.sourceforge.net

with-timeout (seconds timeout-form™) form™ = result™ [Macro]

Purpose

Bound the time allowed to evaluate forms to seconds, evaluating timeout-forms if the time limit is
reached.

Package :portable-threads
Module :portable-threads

Arguments
seconds A number

timeout-forms An implicit progn of forms to be evaluated if the timed forms do not complete before
seconds seconds have elapsed

forms An implicit progn of forms to be evaluated
results The values returned by evaluating the last form or the last timeout-form

Returns

The values returned by evaluating the last form if completed in less than seconds seconds; otherwise
the values returned by evaluating the last timeout-form

Errors

Threads (multiprocessing) is not supported on the Common Lisp implementation. However,
with-timeout is also supported on non-threaded SBCL.

Description

If the evaluation of forms does not complete within seconds seconds, execution of forms is terminated
and the timeout-forms are evaluated, returning the result of the last timeout-form. The
timeout-forms are not evaluated if the forms complete within seconds seconds, in which case the
result of the last form is returned.

See also

condition-variable-wait-with-timeout (page 243)

Examples
Evaluate a simple form, with a one-second time out:

> (with-timeout (1 ’:timed-out)
" :did-not-time-out)

:did-not-time-out

>

Again, but this time sleep for two seconds to cause a time out:

> (with-timeout (1 ’:timed-out)
(sleep 2)
" :did-not-time-out)
:timed-out
>

GBBopen 1.5 Reference
4.1 Portable Threads 265

http://sbcl.sourceforge.net

Uses of with-timeout can be nested:

> (with-timeout (1 ’:timed-out-outer)
(with—-timeout (2 ’:timed-out-inner)

(sleep 3)
" :did-not-time-out))
:timed-out-outer ; (after 1 second)

> (with—-timeout (2 ’:timed-out—-outer)
(with—-timeout (1 ’:timed-out-inner)

(sleep 3)
":did-not-time-out))
:timed-out-inner ; (after 1 second)

>

with-timeout

266

with-timeout

GBBopen 1.5 Reference
4.1 Portable Threads

without-lock-held (lock skey whostate) form™ = result™

Purpose
Temporarily release a lock or a recursive lock, execute forms and then reacquire the lock.

Package :portable-threads
Module :portable-threads

Arguments

lock A lock, a recursive lock, or a condition variable
whostate A string (default "Without Lock Held")
forms An implicit progn of forms to be evaluated
results The values returned by evaluating the last form

Returns
The values returned by evaluating the last form.

Errors
A thread attempts to release a lock that it does not hold.

See also

make-condition-variable (page 247)
make-lock (page 249)
make-recursive-lock (page 250)
thread-holds-lock-p (page 262)
thread-whostate (page 259)
with-lock-held (page 263)

Example

Acquire and temporarily release a lock controlling access to several critical sections of code:

(with-lock-held (lock :whostate "Waiting for Critical Lock")
(critical-section-1)
(without-lock-held (lock :whostate "Doing non-critical stuff")
(non—-critical-section))
(critical-section-2))

Note
The whostate value is ignored by SBCL.

GBBopen 1.5 Reference
4.1 Portable Threads

[Macro]

267

http://sbcl.sourceforge.net

4.2 Scheduled and Periodic Functions

GBBopen provides two forms of time-scheduled functions: scheduled functions and periodic functions,
both built using Portable Threads (see page 224). These time-scheduled-function entities are provided
by the :portable-threads module.

Scheduled Functions

A scheduled function is an object that contains a function to be run at a specified time. When that
specified time arrives, the function is invoked with a single argument: the scheduled function object.
A repeat interval (in seconds) can also be specified for the scheduled function. This value is used
whenever the scheduled function is invoked to schedule itself again at a new time relative to the
current invocation. Scheduled functions can be scheduled to a resolution of one second.

Scheduled functions are scheduled and invoked by a separate "Scheduled-Function Scheduler™"
thread. Unless the run time of the invoked function is brief, the invoked function should spawn a new
thread in which to perform its activities so as to avoid delaying the invocation of a subsequent
scheduled function.

Periodic Functions

A periodic function is a function to be run repeatedly at a specified interval. Unlike

scheduled functions, which can be scheduled only to a resolution of one second, a periodic function can
be repeated at intervals as brief as is supported by the sleep function of the Common Lisp
implementation. A periodic function is scheduled and executed in its own thread. As with

scheduled functions, the invoked function should spawn a new thread in which to perform its
activities, unless its run time is brief.

Portable Threads entities

Descriptions of the Portable Threads entities follow.

GBBopen 1.5 Reference
268 4.2 Scheduled and Periodic Functions

periodic-function-verbose [Variable]

Purpose
Controls whether initiation and termination of periodic-function threads are printed as comments.

Package :portable-threads
Module :portable-threads
Value type A generalized boolean
Initial value ni1

Description
The value of *periodic-function-verbose* can be changed globally to display the management of
periodic functions.

See also

kill-periodic-function (page 272)
spawn-periodic-function (page 294)

Example
Schedule a simple periodic function with verbose printing enabled:

> (setf xperiodic-function-verbosex ’t)

t

> (spawn-periodic-function #’ (lambda () (print "Hello!")) 0.1
:name ’"hello
:count 2)

;7 Spawning periodic-function thread for hello...

#<thread Periodic Function hello>

>

"Hello!"

"Hello!"

;; Exiting periodic-function thread hello

>

GBBopen 1.5 Reference
4.2 Scheduled and Periodic Functions 269

schedule-function-verbose [Variable]

Purpose

Controls whether scheduling changes made to scheduled functions are printed as comments.
Package :portable-threads

Module :portable-threads

Value type A generalized boolean

Initial value ni1

Description

The value of *schedule-function-verbose* can be changed globally to display the activities of the
scheduled function scheduler.

See also
schedule-function (page 278)
schedule-function-relative (page 281)
unschedule-function (page 296)
Example

Change the invocation time of scheduled function quitting-time from 5pm to 5:30pm with verbose
printing enabled:

> (setf xschedule-function-verbosex ’'t)

t

> (schedule-function ’"quitting-time (encode-time-of-day 0 30 17)
:repeat-interval #.(x 24 60 60))

;7 Unscheduling #<scheduled-function quitting-time [17:00:00]>...

;7 Scheduling #<scheduled-function quitting-time [17:30:00]>

;; as the next scheduled-function...

>

GBBopen 1.5 Reference
270 4.2 Scheduled and Periodic Functions

all-scheduled-functions <no arguments> = list-of-scheduled-functions

Purpose
Return the list of all scheduled functions that are currently scheduled.

Package :portable-threads
Module :portable-threads

Arguments
list-of-scheduled-functions A proper list

Returns
A list of scheduled-function objects.

See also

make-scheduled-function (page 273)
schedule-function (page 278)
schedule-function-relative (page 281)
unschedule-function (page 296)

Example

> (all-threads)
(#<thread Listener 1>)
>

Notes
On Common Lisp implementations without threads, nil is returned.

The returned list of scheduled functions should not be destructively altered. In particular,

[Function]

unscheduling a scheduled function (using unschedule-function) or changing a scheduled function’s
invocation time (using schedule-function) may modify the list of scheduled functions, so a copy of

the returned list of scheduled functions should be used for any iteration that involves these

operations.

GBBopen 1.5 Reference
4.2 Scheduled and Periodic Functions

271

kill-periodic-function <no arguments> [Function]
Purpose

Terminate the thread invoking a periodic function.

Package :portable-threads

Module :portable-threads

Errors
Threads (multiprocessing) is not supported on the Common Lisp implementation.

Kill-periodic-function called outside the dynamic scope of a periodic function.

See also

periodic-function-verbose (page 269)
all-threads (page 226)
kill-thread (page 246)

spawn-periodic-function (page 294)

Example

Define and spawn a periodic function that is invoked every 0.5 seconds to signal a
half-second-interrupt-event, continuing as long as the control shell is running:

> (define—-event-class half-second-timer-event (timer-interrupt-event)
())
half-second-timer-event
> (defun half-second-timer ()
(unless (control-shell-running-p)
(kill-periodic-function))
(signal-event ’'half-second-timer-event))
half-second-timer
> (spawn-periodic-function "half-second-timer 0.5)
#<thread Periodic Function half-second-timer>
>

GBBopen 1.5 Reference
272 4.2 Scheduled and Periodic Functions

make-scheduled-function function skey name name-test marker marker-test context [Function]
= scheduled-function

Purpose
Create a scheduled function.

Package :portable-threads

Module :portable-threads

Arguments

function A function designator specifying a function object of one argument

name An object (typically a string or a symbol; default is function, if function is a
symbol, otherwise nil)

name-test A function designator specifying a function object of two arguments that returns
a generalized boolean (default is #’ eql)

marker An object (default is nil)

marker-test A function designator specifying a function object of two arguments that returns
a generalized boolean (default is #’ eql)

context An object (default is nil)

scheduled-function A scheduled function

Returns
The newly created scheduled function.

Errors
Threads (multiprocessing) is not supported on the Common Lisp implementation.

Description

Unless the run time to perform the scheduled function is brief, it should spawn a new thread in which
to perform its activities so as to avoid delaying the invocation of a subsequent scheduled function.

The optional marker and associated comparison marker-test can be specified to distinguish
scheduled functions with the same name in calls to schedule-function,
schedule-function-relative, and unschedule-function.

The optional context object can be specified to store an invocation context in the scheduled-function
object that is passed to the scheduled function when it is invoked.

See also

schedule-function-verbose (page 270)
all-scheduled-functions (page 271)
pause-scheduled-function-scheduler (page 275)
restart-scheduled-function-scheduler (page 276)
resume-scheduled-function-scheduler (page 277)
schedule-function (page 278)
schedule-function-relative (page 281)
scheduled-function-context (page 284)

GBBopen 1.5 Reference
4.2 Scheduled and Periodic Functions 273

make-scheduled-function

scheduled-function-invocation-time (page 285)
scheduled-function-marker (page 286)
scheduled-function-marker-test (page 287)
scheduled-function-name (page 288)
scheduled-function-name-test (page 289)
scheduled-function-repeat-interval (page 290)

scheduled-function-scheduler-paused-p (page 292)
scheduled-function-scheduler-running-p (page 293)

spawn-periodic-function (page 294)
unschedule-function (page 296)
Examples

Create a scheduled function that simply prints "Hello" when invoked:

> (make-scheduled-function
#’ (lambda (scheduled-function)
(declare (ignore scheduled-function))
(print "Hello"))
:name ’"hello)
#<scheduled-function hello [unscheduled]>
>

Create a scheduled function that individualizes the "Hel1lo" when invoked:

> (make-scheduled-function
#’ (lambda (scheduled-function)
(format t "~&Hello ~a~%"
(scheduled-function-context scheduled-function)))
:name "hello
:context "Bob")
#<scheduled-function hello [unscheduled]>
>

A more complex scheduled function that spawns a new thread to do its work and randomly sets
whether to reschedule itself (and at what interval):

> (defun complex-function (scheduled-function)
(let ((interval (random 100)))
(setf (scheduled-function-repeat-interval scheduled-function)
(if (plusp interval)
;7 repeat 1-99 seconds from now:
interval
;; don’t repeat 1% of the time:
nil)))
(spawn-thread "Lots of stuff doer" #’do-lots-of-stuff))
complex-function
> (make-scheduled-function ’'complex—-function)
#<scheduled-function complex-function [unscheduled]>
>

make-scheduled-function

GBBopen 1.5 Reference
274 4.2 Scheduled and Periodic Functions

pause-scheduled-function-scheduler <no arguments> [Function]

Purpose
Pause scheduled-function scheduling.

Package :portable-threads
Module :portable-threads

Errors
Threads (multiprocessing) is not supported on the Common Lisp implementation.

Description

Pausing the scheduled-function scheduler causes all scheduled functions whose invocation time
arrives to be held pending until the scheduled-function scheduler is resumed.

See also

resume-scheduled-function-scheduler (page 277)
scheduled-function-scheduler-paused-p (page 292)
scheduled-function-scheduler-running-p (page 293)

Example
Pause the scheduled-function scheduler:

> (scheduled-function-scheduler-paused-p)
nil

> (pause-scheduled-function-scheduler)

> (scheduled-function-scheduler—-paused-p)
t
>

GBBopen 1.5 Reference
4.2 Scheduled and Periodic Functions 275

restart-scheduled-function-scheduler <no arguments> = thread [Function]

Purpose
Restart the scheduled-function scheduling thread.

Package :portable-threads
Module :portable-threads

Arguments
thread A thread or nil

Returns

The object representing the newly spawned scheduled-function scheduler thread or ni1 if the

scheduled-function scheduler was already running.

Errors

Threads (multiprocessing) is not supported on the Common Lisp implementation.

Description

If the scheduled-function scheduler thread has been killed accidentally, this function can be used to

start a new scheduler thread.

See also

resume-scheduled-function-scheduler (page
schedule-function (page
scheduled-function-repeat-interval (page

scheduled-function-scheduler-paused-p (page
scheduled-function-scheduler-running-p (page
unschedule-function (page

Examples
Restart the scheduled-function scheduler:

277)
278)
290)
292)
293)
296)

> (restart-scheduled-function-scheduler)

#<thread Scheduled-Function Scheduler>
>

Restarting a scheduled-function scheduler that is already running has no effect:

> (restart-scheduled-function-scheduler)
;7 The scheduled-function scheduler is already running.

nil
>

276

GBBopen 1.5 Reference
4.2 Scheduled and Periodic Functions

resume-scheduled-function-scheduler <no arguments> [Function]

Purpose
Resume scheduled-function scheduling.

Package :portable-threads
Module :portable-threads

Errors
Threads (multiprocessing) is not supported on the Common Lisp implementation.

Description

Resuming the scheduled-function scheduler causes all scheduled functions that have been held
pending while the scheduled-function scheduler was paused to be invoked as if their invocation time
had just occurred.

See also

pause-scheduled-function-scheduler (page 275)
scheduled-function-scheduler-paused-p (page 292)
scheduled-function-scheduler-running-p (page 293)

Example
Resume the scheduled-function scheduler:

> (scheduled-function-scheduler—-paused-p)
t

> (resume-scheduled-function-scheduler)

> (scheduled-function-scheduler-paused-p)
nil

>

GBBopen 1.5 Reference
4.2 Scheduled and Periodic Functions 277

schedule-function name-or-scheduled-function invocation-time [Function]
skey marker context repeat-interval verbose

Purpose
Schedule a scheduled function at an absolute invocation time.

Package :portable-threads
Module :portable-threads

Arguments

name-or-scheduled-function An object (typically a string or a symbol) naming a currently scheduled
scheduled function or a scheduled-function object

invocation-time A Universal Time

marker An object (default is nil)

context An object (default is nil)

repeat-interval A positive integer (representing seconds) or nil (default is nil)
verbose A generalized boolean (default is *schedule-function-verbose*)
Errors

Threads (multiprocessing) is not supported on the Common Lisp implementation.

Description

If the scheduled function is unscheduled, the scheduled-function object must be specified as the
name-or-scheduled-function value. In this case, the scheduled function it is added to the list of
currently scheduled scheduled functions with the specified invocation-time and optional
repeat-interval, if specified.

If the scheduled-function object is currently scheduled, either the scheduled-function object or
the optional name value that was specified when the scheduled-function object was created with
make-scheduled-function can be specified as the name-or-scheduled-function value. If a name is
specified as the name-or-scheduled-function value and more than one scheduled function with the
specified name is currently scheduled, the scheduled function with the earliest invocation time is
selected. If an optional marker value was specified along with name when the
scheduled-function object was created with make-scheduled-function, the marker value can
also be specified to restrict the selected scheduled function to the one with the earliest invocation time
that matches both the name and marker values. The selected scheduled function is first unscheduled
and then rescheduled with the specified invocation-time and optional repeat-interval, if specified.

The optional context object can be specified to replace the invocation context in the
scheduled-function object.

See also

schedule-function-verbose (page 270)
all-scheduled-functions (page 271)
encode-time-of-day (page 171)
make-scheduled-function (page 273)
restart-scheduled-function-scheduler (page 276)
schedule-function-relative (page 281)

GBBopen 1.5 Reference
278 4.2 Scheduled and Periodic Functions

schedule-function

scheduled-function-repeat-interval (page 290)
scheduled-function-scheduler-paused-p (page 292)
scheduled-function-scheduler-running-p (page 293)

spawn-periodic-function (page 294)
unschedule-function (page 296)
Examples

Schedule a scheduled function that simply prints "Happy New Year!" at midnight (local time) on
January 1, 2014:
> (schedule—-function
(make—scheduled-function
#’ (lambda (scheduled-function)
(declare (ignore scheduled-function))
(print "Happy New Year!")))
(encode—-universal-time 0 0 0 1 1 2014))
> (all-scheduled-functions)
(#<scheduled-function nil [Jan 1, 2014 00:00:00]1>)
>

Schedule a scheduled function that prints "It’s quitting time!" every day at 5pm:
> (schedule-function
(make-scheduled-function
#/ (lambda (scheduled-function)
(declare (ignore scheduled-function))
(print "It’s quitting time!"))
:name ’'quitting-time)
(encode-time-of-day 0 0 17)
:repeat-interval #.(x 24 60 60))
>

Verbosely change quitting-time to 5:30pm every day:

> (schedule-function "quitting-time (encode-time-of-day 0 30 17)
:repeat—-interval #.(x 24 60 60)
:verbose 't)

;7 Unscheduling #<scheduled-function quitting-time [17:00:00]>...

;+ Scheduling #<scheduled-function quitting-time [17:30:00]>

;; as the next scheduled-function...

>

Schedule a scheduled function that prints an individualized "Hello" message to Bob every day at
9am:
> (schedule—-function
(make—-scheduled-function
#’ (lambda (scheduled-function)
(format t "~&Hello ~a~%"
(scheduled-function-context scheduled-function)))
:name "hello
:context "Bob")
(encode-time-of-day 0 0 9)
:repeat-interval #.(x 24 60 60))

GBBopen 1.5 Reference
4.2 Scheduled and Periodic Functions 279

schedule-function

Verbosely change the scheduled function to prints the individualized "Hello" message to Lisa every
day at 8:30am (Bob will no longer be greeted):

> (schedule-function "hello (encode-time-of-day 0 30 8)
:repeat-interval #.(x 24 60 60)
:context "Lisa"
:verbose 't)
;7 Unscheduling #<scheduled-function hello [09:00:00]>...
;; Scheduling #<scheduled-function hello [08:30:00]>
;7 as the next scheduled-function...
>

schedule-function

GBBopen 1.5 Reference
280 4.2 Scheduled and Periodic Functions

schedule-function-relative name-or-scheduled-function seconds [Function]
&key context marker repeat-interval verbose

Purpose
Schedule a scheduled function a specified number of seconds from now.

Package :portable-threads
Module :portable-threads

Arguments

name-or-scheduled-function An object (typically a string or a symbol) naming a currently scheduled
scheduled function or a scheduled-function object

seconds A positive integer

context An object (default is nil)

marker An object (default is nil)

repeat-interval A positive integer (representing seconds) or nil (default is nil)
verbose A generalized boolean (default is *schedule-function-verbose*)
Errors

Threads (multiprocessing) is not supported on the Common Lisp implementation.

Description

If the scheduled function is unscheduled, the scheduled-function object must be specified as the
name-or-scheduled-function value. In this case, the scheduled function it is added to the list of
currently scheduled scheduled functions with an invocation time of interval seconds from the current
time and optional repeat-interval, if specified.

If the scheduled-function object is currently scheduled, either the scheduled-function object or
the optional name value that was specified when the scheduled-function object was created with
make-scheduled-function can be specified as the name-or-scheduled-function value. If a name is
specified as the name-or-scheduled-function value and more than one scheduled function with the
specified name is currently scheduled, the scheduled function with the earliest invocation time is
selected. If an optional marker value was specified along with name when the
scheduled-function object was created with make-scheduled-function, the marker value can
also be specified to restrict the selected scheduled function to the one with the earliest invocation time
that matches both the name and marker values. The selected scheduled function is first unscheduled
and then rescheduled with an invocation time of interval seconds from the current time and optional
repeat-interval, if specified.

The optional context object can be specified to replace the invocation context in the
scheduled-function object.

See also

schedule-function-verbose (page 270)
all-scheduled-functions (page 271)
make-scheduled-function (page 273)
restart-scheduled-function-scheduler (page 276)
schedule-function (page 278)

GBBopen 1.5 Reference
4.2 Scheduled and Periodic Functions 281

schedule-function-relative

scheduled-function-context (page 284)
scheduled-function-invocation-time (page 285)
scheduled-function-marker (page 286)
scheduled-function-marker-test (page 287)
scheduled-function-name (page 288)
scheduled-function-name-test (page 289)
scheduled-function-repeat-interval (page 290)

scheduled-function-scheduler-paused-p (page 292)
scheduled-function-scheduler-running-p (page 293)

spawn-periodic-function (page 294)
unschedule-function (page 296)
Examples

Schedule a scheduled function that simply prints "Hello!" 5 seconds from now:

> (schedule-function-relative
(make—scheduled-function
#’ (lambda (scheduled-function)
(declare (ignore scheduled-function))
(print "Hello!")))

Schedule a scheduled function that signals a GBBopen timer—interrupt-event every 30 seconds:

> (schedule-function-relative
(make-scheduled-function
#’ (lambda (scheduled-function)
(declare (ignore scheduled-function))
(signal-event ’'timer-interrupt-event)))
30
:repeat—-interval 30)

Schedule a scheduled function that prints an individualized "Hel1lo" message to Bob five seconds
from now, repeating annoyingly every hour thereafter:

> (schedule-function-relative

(make-scheduled-function

#’ (lambda (scheduled-function)
(format t "~&Hello ~a~%"
(scheduled-function-context scheduled-function)))

:name ’"hello
:context "Bob")

5

:repeat-interval 3600)

Verbosely change Bob’s annoying repeating "Hello" message to greet Lisa only once, 10 seconds
from now:

GBBopen 1.5 Reference
282 4.2 Scheduled and Periodic Functions

schedule-function-relative

> (schedule-function-relative "hello 10

:context "Lisa"

:verbose ’t)
;7 Unscheduling #<scheduled-function hello [09:46:11]>...
;; Scheduling #<scheduled-function hello [09:46:27]>...

>
Note

The form (schedule-function-relative scheduled-function 10) is equivalent to
(schedule-function scheduled-function (+ (get-universal-time) 10)).

schedule-function-relative

GBBopen 1.5 Reference

4.2 Scheduled and Periodic Functions 283

scheduled-function-context scheduled-function = object

Purpose
Return the context object of a scheduled function.

Package :portable-threads

Module :portable-threads

Arguments

scheduled-function A scheduled function
context An object

Returns

The context object of scheduled-function.

See also

all-scheduled-functions (page 271)
make-scheduled-function (page 273)
schedule-function (page 278)
schedule-function-relative (page 281)
scheduled-function-invocation-time (page 285)
scheduled-function-marker (page 286)
scheduled-function-marker-test (page 287)
scheduled-function-name (page 288)
scheduled-function-name-test (page 289)
scheduled-function-repeat-interval (page 290)

Example

[Function]

Return the context object of scheduled function scheduled-function:

> (scheduled-function-context scheduled-function)

"Bob"
>

284

GBBopen 1.5 Reference
4.2 Scheduled and Periodic Functions

scheduled-function-invocation-time scheduled-function = invocation-time

Purpose
Return the invocation time of a scheduled function.

Package :portable-threads

Module :portable-threads

Arguments

scheduled-function A scheduled function
invocation-time A Universal Time
Returns

The invocation time of scheduled-function.

See also

all-scheduled-functions (page 271)
make-scheduled-function (page 273)
schedule-function (page 278)
schedule-function-relative (page 281)
scheduled-function-context (page 284)
scheduled-function-marker (page 286)
scheduled-function-marker-test (page 287)
scheduled-function-name (page 288)
scheduled-function-name-test (page 289)
scheduled-function-repeat-interval (page 290)

Example
Return the invocation-time of scheduled function scheduled-function:
> (scheduled-function—-invocation-time scheduled-function)

3465679813
>

GBBopen 1.5 Reference
4.2 Scheduled and Periodic Functions

[Function]

285

scheduled-function-marker scheduled-function = marker

Purpose
Return the marker of a scheduled function.

Package :portable-threads

Module :portable-threads

Arguments

scheduled-function A scheduled function
marker An object

Returns

The marker of scheduled-function.

See also

all-scheduled-functions (page 271)
make-scheduled-function (page 273)
schedule-function (page 278)
schedule-function-relative (page 281)
scheduled-function-context (page 284)
scheduled-function-invocation-time (page 285)
scheduled-function-marker-test (page 287)
scheduled-function-name (page 288)
scheduled-function-name-test (page 289)
scheduled-function-repeat-interval (page 290)

Example

[Function]

Return a list of the markers of all currently scheduled scheduled functions:

> (mapcar #’scheduled-function-marker (all-scheduled-functions))

(nil)
>

286

GBBopen 1.5 Reference
4.2 Scheduled and Periodic Functions

scheduled-function-marker-test scheduled-function = marker-predicate [Function]

Purpose
Return the marker-comparison predicate of a scheduled function.

Package :portable-threads
Module :portable-threads

Arguments
scheduled-function A scheduled function

marker-predicate A function designator specifying a function object of two arguments that returns
a generalized boolean

Returns
The marker-comparison predicate of scheduled-function.

See also

all-scheduled-functions (page 271)
make-scheduled-function (page 273)
schedule-function (page 278)
schedule-function-relative (page 281)
scheduled-function-context (page 284)
scheduled-function-invocation-time (page 285)
scheduled-function-marker (page 286)
scheduled-function-name (page 288)
scheduled-function-name-test (page 289)
scheduled-function-repeat-interval (page 290)

Example
Return a list of the marker-comparison predicates of all currently scheduled scheduled functions:
> (mapcar #’scheduled-function-marker-test (all-scheduled-functions))

(#"eql)
>

GBBopen 1.5 Reference
4.2 Scheduled and Periodic Functions 287

scheduled-function-name scheduled-function = name [Function]

Purpose
Return the name of a scheduled function.

Package :portable-threads

Module :portable-threads

Arguments

scheduled-function A scheduled function

name An object (typically a string or a symbol)
Returns

The name of scheduled-function.

See also

all-scheduled-functions (page 271)
make-scheduled-function (page 273)
schedule-function (page 278)
schedule-function-relative (page 281)
scheduled-function-context (page 284)
scheduled-function-invocation-time (page 285)
scheduled-function-marker (page 286)
scheduled-function-marker-test (page 287)
scheduled-function-name-test (page 289)
scheduled-function-repeat-interval (page 290)

Example

Return the names of all currently scheduled scheduled functions:
> (mapcar #’scheduled-function-name (all-scheduled-functions))
(quitting-time)
>

GBBopen 1.5 Reference
288 4.2 Scheduled and Periodic Functions

scheduled-function-name-test scheduled-function = name-predicate [Function]

Purpose
Return the name-comparison predicate of a scheduled function.

Package :portable-threads
Module :portable-threads

Arguments
scheduled-function A scheduled function

name-predicate A function designator specifying a function object of two arguments that returns
a generalized boolean

Returns
The name-comparison predicate of scheduled-function.

See also

all-scheduled-functions (page 271)
make-scheduled-function (page 273)
schedule-function (page 278)
schedule-function-relative (page 281)
scheduled-function-context (page 284)
scheduled-function-invocation-time (page 285)
scheduled-function-marker (page 286)
scheduled-function-name (page 288)
scheduled-function-name-test (page 289)
scheduled-function-repeat-interval (page 290)

Example
Return a list of the name-comparison predicates of all currently scheduled scheduled functions:
> (mapcar #’scheduled-function-name-test (all-scheduled-functions))

(#"eql)
>

GBBopen 1.5 Reference
4.2 Scheduled and Periodic Functions 289

scheduled-function-repeat-interval scheduled-function = repeat-interval [Function]

Purpose
Return the repeat interval of a scheduled function.

Sefif syntax
(setf (scheduled-function-repeat-interval scheduled-function) repeat-interval) = repeat-interval

Package :portable—-threads

Module :portable-threads

Arguments

scheduled-function A scheduled function

repeat-interval A positive integer (representing seconds) or nil
Returns

The repeat interval of scheduled-function.

See also

all-scheduled-functions (page 271)
make-scheduled-function (page 273)
schedule-function (page 278)
schedule-function-relative (page 281)
scheduled-function-context (page 284)
scheduled-function-invocation-time (page 285)
scheduled-function-marker (page 286)
scheduled-function-marker-test (page 287)
scheduled-function-name (page 288)
scheduled-function-name-test (page 289)
scheduled-function-repeat-interval (page 290)

Examples

Display the scheduled-function object and its repeat interval for each currently scheduled
scheduled function:

> (dolist (scheduled-function (all-scheduled-functions))
(format t "~&;; ~s ~s~%"
scheduled-function
(scheduled-function-repeat-interval scheduled-function)))
;; #<scheduled-function quitting-time [17:00:00]> 86400
nil
>

Define a function to be used as a scheduled function that randomly sets whether to reschedule itself
(and at what interval):

GBBopen 1.5 Reference
290 4.2 Scheduled and Periodic Functions

scheduled-function-repeat-interval

(defun complex—-function (scheduled-function)
(let ((interval (random 100)))
(setf (scheduled-function-repeat-interval scheduled-function)
(if (plusp interval)
;; repeat 1-99 seconds from now:

interval
;; don’t repeat 1% of the time:
nil)))

(do—some—-stuff))

scheduled-function-repeat-interval

GBBopen 1.5 Reference
4.2 Scheduled and Periodic Functions 291

scheduled-function-scheduler-paused-p <no arguments> = boolean [Function]

Purpose
Determine if scheduled-function scheduling is paused.

Package :portable-threads
Module :portable-threads

Arguments
boolean A generalized boolean

Returns
True if the scheduled-function scheduler is paused; nil otherwise.

Errors
Threads (multiprocessing) is not supported on the Common Lisp implementation.

See also

pause-scheduled-function-scheduler (page 275)
resume-scheduled-function-scheduler (page 277)
scheduled-function-scheduler-running-p (page 293)

Example
Pause the scheduled-function scheduler:

> (scheduled-function-scheduler-paused-p)
nil

(pause-scheduled-function-scheduler)
(scheduled-function-scheduler-paused-p)

GBBopen 1.5 Reference
292 4.2 Scheduled and Periodic Functions

scheduled-function-scheduler-running-p <no arguments> =- boolean

Purpose

Determine if the scheduled-function scheduler is running.

Package :portable-threads
Module :portable-threads

Arguments
boolean A generalized boolean

Returns

True if the scheduled-function scheduler is running; nil otherwise.

Errors

Threads (multiprocessing) is not supported on the Common Lisp implementation.

See also

pause-scheduled-function-scheduler (page
restart-scheduled-function-scheduler (page
resume-scheduled-function-scheduler (page
scheduled-function-scheduler-paused-p (page

Example

275)
276)
277)
292)

Check that the scheduled-function scheduler is running:

> (scheduled-function-scheduler-running-p)

t
>

GBBopen 1.5 Reference
4.2 Scheduled and Periodic Functions

[Function]

293

spawn-periodic-function function repeat-interval skey count name verbose = thread [Function]

Purpose
Spawn a thread invoking function every repeat-interval seconds.

Package :portable-threads

Module :portable-threads

Arguments

function A function designator specifying a function object of no arguments

repeat-interval A number (representing seconds)

count A number or nil (defaultis nil)

name An object (typically a string or a symbol; default is function, if function is a symbol,
otherwise ni1)

verbose A generalized boolean (default is *periodic-function-verbose*)

thread A thread

Returns

The object representing the thread associated with the periodic function.

Errors
Threads (multiprocessing) is not supported on the Common Lisp implementation.

Description

If count is nil, function will continue to be invoked every repeat-interval seconds until the
periodic-function thread is killed or until function calls kill-periodic-function. Otherwise, count is
decremented by one prior to each invocation of function and, if it is negative, the periodic function is
terminated.

See also

periodic-function-verbose (page 269)
all-threads (page 226)
kill-periodic-function (page 272)
kill-thread (page 246)
make-scheduled-function (page 273)
schedule-function (page 278)

schedule-function-relative (page 281)

Examples
Spawn a simple periodic function that is invoked every 0.1 seconds, but that only runs twice:

> (spawn-periodic-function #’ (lambda () (print "Hello!")) 0.1
:name ’"hello
:count 2)

#<thread Periodic Function hello>

>

GBBopen 1.5 Reference
294 4.2 Scheduled and Periodic Functions

spawn-periodic-function

"Hello!"
"Hello!"

Spawn a simple periodic function that is invoked every 0.1 seconds that runs up to 20 times, but with
a 10% chance on each invocation of terminating early:

> (spawn-periodic-function
#/ (lambda ()
(when (zerop (random 10))
(kill-periodic-function))
(print "Hello!™M))
0.1
:count 20
:verbose ’'t)
;7 Spawning periodic-function thread for...
#<thread Periodic Function>
>
"Hello!™"
"Hello!"
"Hello!"
"Hello!"
;7 Killing periodic-function...
;; Exiting periodic—function thread

Define and spawn a periodic function that is invoked every 0.5 seconds to signal a
half-second-interrupt-event, continuing as long as the control shell is running:

> (define-event-class half-second-timer-event (timer-interrupt-event)
)
half-second-timer-event
> (defun half-second-timer ()
(unless (control-shell-running-p)
(kill-periodic—-function))
(signal-event "half-second-timer-event))
half-second-timer
> (spawn-periodic-function "half-second-timer 0.5)
#<thread Periodic Function half-second-timer>
>

spawn-periodic-function

GBBopen 1.5 Reference
4.2 Scheduled and Periodic Functions 295

unschedule-function name-or-scheduled-function skey marker warnp verbose [Function]
= boolean

Purpose
Cancel the upcoming invocation (and subsequent repeat-interval scheduling) of a currently scheduled

scheduled function.

Package :portable-threads
Module :portable-threads
Arguments

name-or-scheduled-function An object (typically a string or a symbol) naming a currently scheduled
scheduled function or a scheduled-function object

marker An object (default is nil)

verbose A generalized boolean (default is *schedule-function-verbose*)
warnp A generalized boolean (default is t)

boolean A generalized boolean

Returns

The scheduled function if it was unscheduled; ni1 if the scheduled function was not currently
scheduled or was not found.

Errors
Threads (multiprocessing) is not supported on the Common Lisp implementation.

Description

If the scheduled-function object is currently scheduled, either the scheduled-function object or
the optional name value that was specified when the scheduled—-function object was created with
make-scheduled-function can be specified as the name-or-scheduled-function value. If a name is
specified as the name-or-scheduled-function value and more than one scheduled function with the
specified name is currently scheduled, the scheduled function with the earliest invocation time is
selected. If an optional marker value was specified along with name when the
scheduled-function object was created with make-scheduled-function, the marker value can
also be specified to restrict the selected scheduled function to the one with the earliest invocation time
that matches both the name and marker values. The selected scheduled function is removed from the
list of currently scheduled scheduled functions.

If warnp is true, a warning is issued if the scheduled function was not currently scheduled or was not
found.

See also

schedule-function-verbose (page 270)
all-scheduled-functions (page 271)
make-scheduled-function (page 273)
schedule-function (page 278)
schedule-function-relative (page 281)

GBBopen 1.5 Reference
296 4.2 Scheduled and Periodic Functions

unschedule-function

Examples
Unschedule the quitting-time scheduled function:

> (unschedule-function ’quitting-time)
#<scheduled-function quitting-time [unscheduled]>
>

Unschedule all currently scheduled scheduled functions:

> (all-scheduled-functions)

(#<scheduled-function nil [Jan 1, 2014 00:00:00]1>)

> (mapc #’unschedule-function (all-scheduled-functions))
(#<scheduled-function nil [unscheduled]>)

> (all-scheduled-functions)

nil

>

Unschedule a non-existent scheduled function:

> (unschedule-function ’"non-existent)

;7 Warning: Scheduled-function non-existent was not scheduled; no action
taken.

nil

>

unschedule-function

GBBopen 1.5 Reference
4.2 Scheduled and Periodic Functions 297

4.3 Polling Functions

The :polling—functions module provides a set of polling functions that can be used to support
“event-loop” processing on Common Lisp implementations that do not provide threads. These
functions are available for use with all Common Lisp implementations.

GBBopen 1.5 Reference
298 4.3 Polling Functions

add-polling-function function skey priority [Function]

Purpose
Add a polling function to the list of polling functions at the position indicated by priority.

Package :gbbopen-tools
Module :polling-functions

Arguments
function A function designator specifying a function object of no arguments
priority A fixnum (default is 0)

Description
The description is printed to the *standard-output* stream.
See also

describe-all-polling-functions (page 300)
remove-all-polling-functions (page 302)

remove-polling-function (page 301)
run-polling-functions (page 303)
Example

Add the function check-for-new—connection to the list of polling functions (with priority -10):

(add-polling-function #’check-for-new-connection
:priority -10)

GBBopen 1.5 Reference
4.3 Polling Functions 299

describe-all-polling-functions <no arguments> [Function]

Purpose
Describe the polling functions in the list of polling functions.

Package :gbbopen-tools

Module :polling-functions

Description

The description is printed to the *standard-output* stream.
See also

add-polling-function (page 299)
remove-all-polling-functions (page 302)
remove-polling-function (page 301)
run-polling-functions (page 303)

Example

Describe list of polling functions:

> (describe-all-polling-functions)

;; Polling functions:

P -10 #<Function check-for—-new-connection>
>

GBBopen 1.5 Reference
300 4.3 Polling Functions

remove-polling-function function

Purpose
Remove a polling function from the list of polling functions.

Package :gbbopen-tools
Module :polling-functions

Arguments
function A function designator

See also

add-polling-function (page 299)
describe-all-polling-functions (page 300)
remove-all-polling-functions (page 302)
run-polling-functions (page 303)

Example
Remove the function check-for—-new-connection from the list of polling functions:

(remove-polling-function #’check-for-new-connection)

GBBopen 1.5 Reference
4.3 Polling Functions

[Function]

301

remove-all-polling-functions <no arguments>

Purpose

Remove all polling functions from the list of polling functions.

Package :gbbopen-tools

Module :polling-functions

See also
add-polling-function (page 299)
describe-all-polling-functions (page 300)
remove-polling-function (page 301)
run-polling-functions (page 303)
Example

Remove all functions from the list of polling functions:

(remove—-all-polling-functions)

302

[Function]

GBBopen 1.5 Reference
4.3 Polling Functions

run-polling-functions <no arguments>

Purpose

Run every polling function in the list of polling functions.

Package :gbbopen-tools
Module :polling-functions

See also

add-polling-function (page 299)
describe-all-polling-functions (page 300)
remove-all-polling-functions (page 302)

remove-polling-function (page 301)
start-control-shell (page 622)
Example

Run the polling functions (once, in sequence):

(run-polling-functions)

Note

[Function]

When a non-nil :run-polling-functions value is supplied to start-control-shell (the default on
Common Lisp implementations without threads), run-polling-functions is called at the beginning
of every control-shell-cycle and at one-half-second intervals when the Agenda Shell is hibernating due

to quiescence.

GBBopen 1.5 Reference
4.3 Polling Functions

303

4.4 Portable Sockets

The :portable-sockets module provides a uniform interface to commonly used socket entities.

GBBopen 1.5 Reference
304 4.4 Portable Sockets

accept-connection passive-socket skey wait = socket-stream [Function]

Purpose
Accept a socket-stream connection.

Package :portable-sockets
Module :portable-sockets

Arguments

passive-socket A passive socket

wait A generalized boolean (default is t)
socket-stream A socket stream

Returns
A socket stream.

See also

shutdown-socket-stream (page 311)
start-connection-server (page 312)

Example
Accept a connection made to a newly created passive socket:

> (let* ((passive-socket (make-passive-socket 5555))
(connection (accept-connection passive-socket)))
(close-passive-socket passive-socket)
connection)
#<socket stream connected from localhost/5555 to localhost/59946>
>

Note

Connections should always be closed using close (from both sides) to free up operating-system
resources when they are no longer needed.

GBBopen 1.5 Reference
4.4 Portable Sockets

305

close-passive-socket passive-socket

Purpose
Close a passive socket.
Package :portable-sockets

Module :portable-sockets

Arguments
passive-socket A passive socket

See also

make-passive-socket (page 308)

Example
Close a passive socket:

(close-passive-socket passive-socket)

306

[Function]

GBBopen 1.5 Reference
4.4 Portable Sockets

local-hostname-and-port socket-stream soptional do-not-resolve = hostname, port [Function]
Purpose

Return the name of the host on the local side of the socket-stream connection and its port number.
Package :portable-sockets

Module :portable-sockets

Arguments
socket-stream A socket stream
do-not-resolve A generalized boolean (default is nil)

hostname A string
port An integer
Returns

Two values:

e a string containing the name of the local host

e the integer port number at the local host

See also

open-connection (page 309)
remote-hostname-and-port (page 310)
with-open-connection (page 314)
Examples

Return the local hostname and port of an open socket-stream connection to the wiki.alu.org web
server:

> (local-hostname-and-port connection)
"192.168.240.104 (ruby.gbbopen.org)"
56833

>

Return the local hostname and port of the open socket-stream connection, but without hostname
resolution:

> (local-hostname-and-port connection ’'t)
"192.168.240.104"

56833

>

GBBopen 1.5 Reference
4.4 Portable Sockets 307

make-passive-socket port skey backlog interface reuse-address = passive-socket [Function]

Purpose
Create a passive socket that can accept connections.

Package :portable-sockets

Module :portable-sockets

Arguments

port An integer or a string specifying the service port

backlog An integer (default is 5)

interface A 32-bit internet address or a string specifying a network interface on the local

machine or nil
reuse-address A generalized boolean (default is nil)
passive-socket A passive socket

Returns
The new passive socket.

Description

An interface string can be either a host name, such as "localhost" or a “dotted” IP address, such as
"127.0.0.1".

The value of backlog tells the operating system how many unprocessed connections can be held
pending (connected but still awaiting an accept-connection).

See also

accept-connection (page 305)
start-connection-server (page 312)

Example
Create a passive socket, listening on port 5555:

> (make-passive—-socket 5555)
#<passive socket waiting for connection at x/5555>
>

Note

The passive socket should be closed using close-passive-socket when the service is no longer needed
in order to free up operating system resources.

GBBopen 1.5 Reference
308 4.4 Portable Sockets

open-connection host port = socket-stream [Generic Function]
Purpose
Open a socket-stream connection to server host.

Method signatures
open-connection (host integer) port = socket-stream

open-connection (host string) port = socket-stream
Package :portable-sockets

Module :portable-sockets

Arguments
host A 32-bit internet address or a string specifying the remote host
port An integer or a string specifying the service port

socket-stream A socket stream

Returns
A socket stream.

Description
A host string can be either a host name or a “dotted” IP address, such as "127.0.0.1".

String values available for specifying port are found in the operating system’s services file and
labeled as being t cp services. On Unix systems, the services file is /etc/services. On Windows, it
is the file services in the Windows directory.

See also

shutdown-socket-stream (page 311)
with-open-connection (page 314)

Example
Open a socket connection to the GBBopen Project web server:

> (open-connection "GBBopen.org" 80)
f<socket stream connected from localhost/51756 to gbbopen.org/80>
>

Note

Connections should always be closed using close (from both sides) when they are no longer needed to
free up operating-system resources.

GBBopen 1.5 Reference
4.4 Portable Sockets 309

remote-hostname-and-port socket-stream soptional do-not-resolve [Function]
= hostname, port

Purpose
Return the name of the host on the remote side of the socket-stream connection and its port number.

Package :portable—-sockets
Module :portable-sockets

Arguments
socket-stream A socket stream
do-not-resolve A generalized boolean (defaulto is nil)

hostname A string
port An integer
Returns

Two values:

e a string containing the name of the remote host
e the integer port number at the remote host

See also

open-connection (page 309)
local-hostname-and-port (page 307)
with-open-connection (page 314)

Examples

Return the remote hostname and port of an open socket-stream connection to the wiki.alu.org web
server:

> (remote-hostname-and-port connection)
"206.169.106.4 (bibop.alu.orqg)"

80

>

Return the remote hostname and port of the open socket-stream connection, but without hostname
resolution:

> (remote-hostname-and-port connection ’t)
"206.169.106.4"

80

>

GBBopen 1.5 Reference
310 4.4 Portable Sockets

shutdown-socket-stream socket-stream direction [Function]

Purpose
Shut down (close) one direction of an open connection.

Package :portable-sockets
Module :portable-sockets

Arguments
socket-stream A socket stream
direction The keyword symbol : input or :output specifying the direction to be closed

See also

start-connection-server (page 312)
open-connection (page 309)
with-open-connection (page 314)

Example
Tell the other end of a socket connection that we are done sending output on the socket stream (send
an end-of-file indication):

14

(shutdown-socket—-stream socket-stream '’ :output)

Note

Connections should always be closed using close (from both sides) when they are no longer needed to
free up operating-system resources.

GBBopen 1.5 Reference
4.4 Portable Sockets 311

start-connection-server function port skey backlog interface name reuse-address [Function]
= thread

Purpose
Create a connection-server thread that accepts connections and processes them according to function.

Package :portable-sockets

Module :portable-sockets

Arguments

function A function designator specifying a function object of one argument

port An integer or a string specifying the service port

backlog An integer (default is 5)

interface A 32-bit internet address or a string specifying a network interface on the local
machine or nil

name A string (default is "Connection Server")

reuse-address A generalized boolean (default is nil)

thread A thread

Returns

The new connection-server thread.

Errors
Threads (multiprocessing) is not supported on the Common Lisp implementation.

Description
The connection server will not accept another connection until function returns, so normally function
should spawn another thread to handle the connection.

An interface string can be either a host name, such as "1ocalhost" or a “dotted” IP address, such as
"127.0.0.1".

The value of backlog tells the operating system how many unprocessed connections can be held
pending (connected but still awaiting an accept-connection).

See also
kill-thread (page 246)
open-connection (page 309)

with-open-connection (page 314)

Example

Start a simple connection server that accepts connections on port 5555, reads one line of input, and
closes the connection:

> (start-connection-server
#’ (lambda (connection)
(let ((line (read-line connection nil)))
(format t "~&;; New Connection: ~a~%" line)

GBBopen 1.5 Reference
312 4.4 Portable Sockets

start-connection-server

(close connection)))
5555)
#<thread Connection Server>

Note
Use kill-thread to kill the connection-server thread.

start-connection-server

GBBopen 1.5 Reference
4.4 Portable Sockets 313

with-open-connection (var host port) declaration® form™ [Macro]

Purpose

Open a socket-stream connection to server host, perform a series of operations on the connection, and
then close the connection.

Package :portable-sockets
Module :portable-sockets

Arguments

var A variable symbol

host A 32-bit internet address or a string specifying the remote host
port An integer or a string specifying the service port

declaration A declare expression (not evaluated)

forms An implicit progn of forms to be evaluated

Description
This macro ensures that the opened connection is closed when control leaves the body of the macro.

A host string can be either a host name or a “dotted” IP address, such as "127.0.0.1".

String values available for specifying port are found in the operating system’s services file and
labeled as being tcp services. On Unix systems, the services file is /etc/services. On Windows, it
is the file services in the Windows directory.

See also

open-connection (page 309)
shutdown-socket-stream (page 311)

Example
Open a socket connection to the GBBopen Project web server:

> (with-open-connection (connection "GBBopen.org" 80)
(flet ((write-crlf (stream)

;; HTTP requires CR/LF line termination:
(write—char #\return stream)
(write—-char #\linefeed stream)))

format connection "GET / HTTP/1.1")

write-crlf connection)

format connection "Host: ~a:~a" host port)

write—-crlf connection)

(

(

(

(write—-crlf connection)

(

(force-output connection)
(

let ((line (read-line connection)))
(format t "~&;; Received: ~a~%" line))))
;; Received: HTTP/1.1 200 OK

>

GBBopen 1.5 Reference
314 4.4 Portable Sockets

4.5 Double Metaphone

The : double-metaphone module provides Double Metaphone phonetic-code generation.

The Metaphone algorithm, published by Lawrence Philips in 1990, improved early phonetic
approaches, such as Soundex, by attempting to correctly code cases where “gh” is pronounced as “f” as
in “laugh” and when it is silent, as in “dough,” or where “t,” “c,” and “s” are pronounced as “sh” (or “ch,”
which is treated as a sound that is similar enough to “sh” to be mapped to the same encoding value)
as in “ratio,” “ciao,” and “erosion.” Although Metaphone was an improvement, it failed to encode many
common words accurately, including the silent “1” in “lincoln,” and the case of “school” where “ch” is
pronounced as “k.” Also, by using the Soundex style of encoding an initial vowel as it appears,

Metaphone results in different encodings for “Otto” and “auto,” which sound similar enough to match.

Double Metaphone was published by Lawrence Philips in 2000 to improve accuracy further than was
achieved by Metaphone. It maps all initial vowels to “A,” matching “Otto” to “auto.” It attempts to
correctly encode a number of common words and names commonly found in the United States that are
of non-english origin and are usually pronounced correctly according to their non-english spellings, by
Americans, such as “Jose” or “pizza.” It also attempts to account for cases where more than one
pronunciation may be common in the United States, such as the Spanish name “Cabrillo” which
might be plausibly pronounced as “cabreeyo” or “cabrillo.” Double Metaphone addresses exceptions in
regular English pronunciation, such as the many cases of silent consonants, such as the silent “1” in

“lincoln” or the silent “s” in “island,” as well as the pronunciation of “s” as “sh” in “sugar,” or an
anomaly like “caesar,” an unusual case of a “c” followed by an “a” where the “c” is pronounced as “s.”

Even with this more detailed treatment, Double Metaphone still misses a number of common
exceptions, such as the silent “p” in “receipt,” many cases where “ch” is pronounced as “k” instead of
“ch” as in “monarch,” many cases where Americans pronounce words of non-English origin according
to their non-English pronunciations, such as “chutzpah,” and exceptions such as “colonel,” pronounced

“kernal,” and “tucson,” pronounced “tooson.”

In addition to providing strict adherence to the Double Metaphone algorithm, this Common Lisp
implementation also supports an extended-encoding option that activates additional encoding rules
that separate the sounds used for “B” and “P,” for “D” and “T,” for “F” and “V,” and for “S” and “Z.” The
extended-encoding option often produces phonetic-code results that are more natural and intuitive.

GBBopen 1.5 Reference
4.5 Double Metaphone 315

double-metaphone string soptional extended-p = primary-index [, secondary-index] [Function]

Purpose
Compute the primary and secondary Double Metaphone phonetic-code strings of string.

Package :gbbopen-tools
Module :double-metaphone

Arguments

string A string

extended-p A generalized boolean (default is nil)
primary-index A string

secondary-index A string

Returns

One or two values: the primary and secondary phonetic-code strings. If there is no secondary code for
string, only the primary string is returned.

Description
If extended-p is nil, strict Double Metaphone encoding is used. If extended-p is true, additional

encoding rules that separate sounds are used for “B” and “P,” for “D” and “T,” for “F” and “V,” and for
“S” 3 ”»
and “Z.

Examples
> (double-metaphone "testing")
"TSTN"
> (double-metaphone "Smith")
" SMO n
" XMT "
> (double-metaphone "Schmidt")
mw XMT n
"w SMT n
> (double—-metaphone "batboy")
"w P TP "
> (double-metaphone "batboy" ’'t)
"w BTB n
> (double-metaphone "Barlow")
"w PRL n
"PRLF"
> (double-metaphone "Barlow" ’t)
"w BRL n
"BRLE"
> (double—-metaphone "buzz")
" P S n
> (double-metaphone "buzz" ’'t)
"BZ n
>

GBBopen 1.5 Reference
316 4.5 Double Metaphone

4.6 OS Interface

The : os—interface module provides a uniform interface to commonly used operating-system
entities.

GBBopen 1.5 Reference
4.6 OS Interface 317

browse-hyperdoc symbol = boolean [Function]

Purpose
Display the GBBopen Hyperdoc page for symbol in a browser window.

Package :gbbopen-tools
Module :os-interface

Arguments
symbol A symbol
boolean A generalized boolean

Returns

True if the Hyperdoc file associated with symbol is available and has been passed to the preferred
browser; no value otherwise.

Description

The desired browser can be specified in xpreferred-browser« (see the discussion in GBBopen
hyperdoc (see page 7) for details).

See also

preferred-browser (page 11)

Example
> (browse-hyperdoc ’standard-event-instance)
t
>

GBBopen 1.5 Reference
318 4.6 OS Interface

close-external-program-stream stream [Function]

Purpose
Close a stream created by run-external-program.

Package :gbbopen-tools
Module :os-interface

Arguments
stream The stream to be closed

See also

run-external-program (page 321)

Example

> (let ((stream (run—external-program "date" nil)))
(print (read-line stream))
(close-external-program-stream stream))

"Mon Jul 4 14:06:04 EDT 2005"

>

GBBopen 1.5 Reference
4.6 OS Interface 319

kill-external-program os-process soptional signal-number

Purpose
Terminate or signal an external program.

Package :gbbopen-tools
Module :os-interface

Arguments
0s-process An implementation-dependent process representation or nil
signal-number A small integer (default is 15, the software termination signal)

Errors
This function is not supported on Windows platforms.

See also

run-external-program (page 321)

Example

> (multiple-value-bind (stream os—-process)
(run—-external-program "sleep" ' ("120"))
(sleep 10)
(kill-external-program os-process))

[Function]

GBBopen 1.5 Reference

320

4.6 OS Interface

run-external-program program args &key input output wait [Function]
= bidirectional-stream, os-process

Purpose
Run an external program.

Package :gbbopen-tools

Module :os-interface

Arguments

program A string specifying the name of the program to be run

args A list of strings passed to program as arguments

input A stream specification (default is : st ream, see below)
output A stream specification (default is : st ream, see below)

wait A generalized boolean (default is ni1)

bidirectional-stream A stream or nil

0s-process An implementation-dependent process representation or nil
Returns

Two values:

e an input, output, or bi-directional stream or nil
e an operating-system process representation, if available, or nil

Errors

Use of a true value for wait and a : st ream value for input or output is problematic or an error in
most Common Lisp implementations.

Description
The values of input and output can be:
e :stream (the default) which creates a stream that is returned as the first result value; if both
input and output are specified as : st ream, a bi-directional stream is created and returned
e a string specifying a file to be used as input or output

LispWorks (non-Windows platforms) and SBCL do not use a search path for locating program, the full
path must be specified in the program string.

See also

close-external-program-stream (page 319)

Example
> (let ((stream (run-external-program "date" nil)))
(print (read-line stream))
(close—-external-program-stream stream))
"Mon Jul 4 14:06:04 EDT 2005"
>

GBBopen 1.5 Reference
4.6 OS Interface 321

http://www.lispworks.com
http://sbcl.sourceforge.net

svn-version skey directory program = version-string-or-nil [Function]

Purpose
Obtain the Subversion compact version number of a working copy.

Package :gbbopen-tools
Module :os-interface

Arguments
directory One of the following:
e A string specifying a directory
e A pathname specifying a directory
e A keyword naming a root directory
(default is the GBBopen install directory)

program A string specifying the name of the program to be run (default is
"svnversion")

version-string-or-nil A string or nil

Returns

A string containing the compact version number or nil if the program svnversion cannot be found
or the specified directory is not in a Subversion working copy.

Description

LispWorks (non-Windows platforms) and SBCL do not use a search path for locating program, the full
path must be specified in the program string.

Examples
> (svn-version)
"525"
> (svn-version :program "/usr/bin/svnversion")
"525"
> (svn-version :directory
"73:76M"
>

4

:my—app-root)

GBBopen 1.5 Reference
322 4.6 OS Interface

http://subversion.tigris.org
http://www.lispworks.com
http://sbcl.sourceforge.net

5 GBBopen Core

The GBBopen Core module, : gbbopen-core, provides support for the blackboard repository, unit
and space classes and instances, inter-instance links, and event signaling.

Documentation for unit-class and unit-instance entities, as well as general-purpose : gbbopen—core
entities, is included in this section. Documentation for the remaining : gbbopen-core entities is
arranged into the following sections:

link entities (Section 5.1)

event, event function, event printing, and event signaling entities (Section 5.2)
interval manipulation entities (Section 5.3)

space-instance and blackboard-repository entities (Section 5.4)

instance retrieval and iteration/mapping entities (Section 5.5)

saving/sending and loading/reading entities (Section 5.6)

queue-management entities (Section 5.7)

GBBopen 1.5 Reference
5 GBBopen Core 323

skip-deleted-unit-instance-class-change [Variable]

Purpose

Controls whether the class of a unit instance is changed to a deleted-unit-instance when it is
deleted.

Packqge :gbbopen

Module :gbbopen-core
Value type A generalized boolean
Initial value ni1

Description

When *skip-deleted-unit-instance-class-change* is nil, the class of a unit instance is changed to
a deleted-unit-instance when it is deleted. This helps identify a deleted unit instance that is used
inadvertently, at the minor additional cost of the class change when the instance is deleted. In
situations where unit instances are created and deleted at a high rate, the class change can be
skipped by binding *skip-deleted-unit-instance-class-change® to a non-nil value. The predicate
instance-deleted-p can be used to detect either form of a deleted unit instance.

See also

check-for-deleted-instance (page 327)
delete-instance (page 334)
deleted-instance-class (page 336)
deleted-unit-instance (page 337)
instance-deleted-p (page 353)
Example

Create and delete a hyp unit instance, first with the default changing-class behavior of
delete-instance and then with the class-change skipped:

> (delete—-instance (make-instance ’'hyp))

#<deleted-unit-instance hyp 1>

> (instance-deleted-p *)

t

> (let ((xskip-deleted-unit-instance-class-changex* ’'t))
(delete—-instance (make-instance ’'hyp)))

#<hyp [Deleted] 2>

> (instance-deleted-p *)

t

>

GBBopen 1.5 Reference
324 5 GBBopen Core

change-class instance new-class skey sallow-other-keys [Generic Function]
= changed-instance

Purpose
Change the class of an instance to new-class.

Method signatures

change-class :around (instance standard-object) (new-class standard-unit-class) &key
&allow—other-keys = instance

change-class :around (instance standard-object) (new-class standard-unit-class) &key
&allow—-other—-keys = instance

change-class :before (instance standard-unit-instance) (new-class standard-class) &key
&allow—-other-keys

change-class :after (instance standard-unit-instance) (new-class standard-unit-class)
&key &allow—-other-keys

change-class :after (instance standard-object) (new-class standard-unit—-class) &key
&allow—-other-keys

Package :gbbopen

Module :gbbopen-core

Arguments
instance A standard-object instance
new-class A class designator

changed-instance A standard-object instance

Returns
The destructively modified instance.

Events

If instance is a unit instance, a change—-instance—class—event is signaled at the start of the
class-change process. If new-class is a unit class, an instance-changed-class—event is signaled
when the class change has been completed.

The following events may also be signaled:
e unlink-event
e instance-removed-from-space-instance-event
e link—-event
e nonlink-slot-updated-event

e instance-added-to-space-instance-event

Errors
The existing or supplied instance name of instance is identical to the instance name of an existing
unit instance of new-class.

GBBopen 1.5 Reference
5 GBBopen Core 325

change-class

Description

When new-class is a unit class, an instance-name conflict with an existing unit instance of new-class
must be avoided. If the old class of instance and new-class are both unit classes that use the global
instance-name counter, the old instance-name value can be retained safetly. If new-class is a unit
class with a class-based counter, specifying a new instance-name value (using
next-class-instance-number) is recommended.

When the old class and new-class are both unit classes and no space-instances value is supplied to
change-class, the changed instance remains on all space instances that allow new-class

unit instances. In addition, instance is also added to all space instances defined as
initial-space-instances for new-class. If a space-instances value is supplied, instance is removed from
all space instances and then added to the supplied space instances.

See also
define-unit-class (page 330)
make-duplicate-instance-changing-class (page 361)
next-class-instance-number (page 366)
Example

Change the class of unit instance hyp from probable-hyp to rejected-hyp:

> (change-class hyp 'rejected-hyp

:instance—-name (next-class—-instance-number ’rejected-hyp))
#<rejected-hyp 1409 (896 388) .68>
>

Note that the : instance-name initarg can be eliminated if both the old and new classes for hyp are
using the global instance-name counter.

change-class

GBBopen 1.5 Reference
326 5 GBBopen Core

check-for-deleted-instance unit-instance soptional operation
Purpose

Signal an error if the supplied unit instance has been deleted.
Packoge :gbbopen

Module :gbbopen-core

Arguments
unit-instance A unit instance
operation A symbol (default is nil)

See also

delete-instance (page 334)
instance-deleted-p (page 353)

Examples
Create, then delete, then check, a hyp unit instance:

> (check-for-deleted-instance (delete-instance (make—-instance
Error: Instance #<deleted-unit-instance hyp 7> has been deleted

>> :abort

> (check-for-deleted-instance (delete-instance (make-instance

"my—-operation)

Error: my-operation attempted with a deleted instance:

#<deleted-unit-instance hyp 8>
>>

GBBopen 1.5 Reference
5 GBBopen Core

[Function]

"hyp)))

327

check-instance-locators unit-instance [Function]

Purpose
Signal an error if the locators on any space-instance are inconsistent with the dimension values of the
supplied unit instance.

Packqge :gbbopen
Module :gbbopen-core

Arguments
unit-instance A unit instance

Description

Changes to slot values that affect a unit instance’s dimension values must be indicated to GBBopen
using the with-changing-dimension-values macro. Otherwise, locators for the unit instance will
not be updated to reflect the new dimension values, resulting in the inability to retrieve the instance
where it should be located on a space instance and removed or deleted instances incorrectly retained
on a space instance due to the inconsistent locators. Check-instance-locators can be used as a
debugging aid during development to check for inconsistent locators.

See also

with-changing-dimension-values (page 372)

Examples
Check the locators of all unit instances that are stored on any space instance:

> (map-instances-on-space-instances #’check-instance-locators t t)
nil
>

Intentionally create inconsistent locators for a hyp unit instance by changing its 1ocation without
using with-changing-dimension-values. Then check its locators:

> (defparameter *hypx (find-instance-by-name 419 "hyp))

hyp=

> xhyp=*

#<hyp 419 (1835 4791) 0.85 [5..35]>

> (check-instance-locators xhypx)

nil

> (setf (location-of xhyp=*) ' (2000 2000))

(2000 2000)

> (check-instance-locators xhypx)

Error: Instance #<hyp 419 (2000 2000) 0.85 [5..35]> is missing (bucket
[21,21])

in #<2d-Uniform-Buckets (bb hyps) (hyp+) (x y) 8>
>>

GBBopen 1.5 Reference
328 5 GBBopen Core

class-instances-count unit-class-or-name = count

Purpose
Obtain the current count of unit instances of a unit class.

Method signatures
class-instances-count (unit-class-name symbol) = count

class-instances-count (unit-class-specifier cons) = count
class-instances-count (unit-class standard-unit-class) = count

Package :gbbopen

Module :gbbopen-core

Arguments

unit-class-or-name A unit class or a symbol naming a unit class
count An integer

Returns

The count of unit instances of the specified unit class. If an extended unit-classes specification is

[Generic Function]

supplied, the sum of the unit instance counts of the specified classes is returned.

See also

next-class-instance-number (page 366)

Examples
Return the count of unit instances of standard-space-instance:

> (class—-instances-count ’standard-space-instance)
38
>

Return the count of all space instance:

> (class-instances-count ’ (standard-space-instance
14
>

or simply:

:plus—-subclasses))

> (class—-instances-count ’ (standard-space-instance +))

14
>

GBBopen 1.5 Reference
5 GBBopen Core

329

define-unit-class unit-class-name ({superclass-name}”) ({slot-specifier}”) {class-option}* [Macro]
= new-unit-class

Purpose
Define or redefine a unit class.

Package :gbbopen
Module :gbbopen-core

Arguments

unit-class-name A non-nil, non-keyword symbol that names the unit class

superclass-name A non-nil, non-keyword symbol that specifies a direct superclass of the unit class
unit-class-name

slot-specifiers See below

class-options See below

new-unit-class A new or modified unit class object

Returns
The newly defined or modified unit class object.

Errors

The specified superclass-names do not include at least one unit class name. This error is signaled on
class finalization.

Detailed syntax

(Syntax shown in gray is not supported in GBBopen Version 1.5, but will become available in a future release.)

slot-specifier ::= slot-name |
(nonlink-slot-name [[nonlink-slot-option]]) |
(link-slot-name [[link-slot-option]])

nonlink-slot-name ::= slot-name
link-slot-name ::= slot-name
link-slot-option ::= slot-option |

{: 1ink inverse-link-slot-specifier} |

{:singular boolean} |

{:sort-function function} |

{: sort-key function}
inverse-link-slot-specifier ::= (unit-class-name link-slot-name [: singular boolean]) |

:reflexive
nonlink-slot-option ::= slot-option |
{: reader reader-function-name}” |
{:writer writer-function-name}”

slot-option ::= {: accessor reader-function-name}™ |
{:allocation allocation-type} |
{:documentation string} |
{:initarg initarg-name}” |
{:initform form} |
{:type type-specifier}

GBBopen 1.5 Reference
330 5 GBBopen Core

define-unit-class

class-option ::= (:abstract boolean) |

(:default-initargs . initarg-list) |

(:dimensional-values dimension-value-specifier™) |

(:documentation string) |

(:estimated-instances size-form) \

(:export-accessors boolean) |

(:export—-class—name boolean) |

(:export-slot-names direct-slots-specifier) |

(:generate—accessors direct-slots-specifier) |

(:generate—accessors—format {:prefix | :suffix} |

(:generate—accessors-prefix {string | symbol}) |

(:generate-accessors-suffix {string | symbol}) |

(:generate—initargs direct-slots-specifier) |

(:initial-space-instances initial-space-instance-specifier) |

(:instance—-name-comparison-test instance-name-comparison-test) |

(:metaclass class-name) |

(:retain {boolean | :propagate}) |
(:use—-global-instance-name—counter boolean)

initial-space-instance-specifier ::= {space-instance-path™ | function}

dimension-value-specifier ::= incomposite-dv-specifier | composite-dv-specifier

incomposite-dv-specifier ::= (dimension-name dimension-value-spec dimension-value-place)
composite-dv-specifier ::= (dimension-name dimension-value-specifier

composite-type dimension-value-place)
composite-type ::= :set | : sequence |

{:ascending-series ordering-dimension-name} |
{:descending-series ordering-dimension-name}
dimension-value-specifier ::= dimension-value-type |
(ordered-dimension-value-type [ordered-comparison-type]) |
(enumerated-dimension-value-type [enumerated-comparison-typel) |
(boolean-dimension-value-type [boolean-comparison-type])
dimension-value-type ::= ordered-dimension-value-type |
enumerated-dimension-value-type |
boolean-dimension-value-type

ordered-dimension-value-type ::= :point | :interval | :mixed
enumerated-dimension-value-type ::== :element

boolean-dimension-value-type ::= :boolean

ordered-comparison-type ::= number | fixnum | short-float | single-float |

double-float | long-float |

pseudo-probability
enumerated-comparison-type ::= eq | eql | equal | equalp
boolean-comparison-type ::= t
dimension-value-place ::= {slot-name [slot-namel} | {function [slot-namel}
direct-slots-specifier ::= nil | t | included-slot-name™ |

{t :exclude excluded-slot-name*}

The default ordered-comparison-type, if unspecified, is number. The default
enumerated-comparison-type, if unspecified, is eql. The default boolean-comparison-type is t.

A dimension-value-place with two slot-names is allowed only for an : interval dimension-value
specification.

Terms

GBBopen 1.5 Reference
5 GBBopen Core 331

define-unit-class

class-name A non-nil, non-keyword symbol that names a class
dimension-name A symbol specifying a dimension

documentation A documentation string

initarg-list An initialization argument list

instance-name-comparison-test One of the four standardized hash table test function names: eq,
eql, equal, or equalp (default for classes of metaclass
standard-unit-class is eql)

ordering-dimension-name A symbol specifying the ordering dimension used to order
series-composite dimension values

size-form An integer or an expression that evaluates to an integer (evaluation
occurs whenever the unit class is initialized, reinitialized, or reset)

slot-name A non-nil, non-keyword symbol

Description

A dimension-value-place with two slot-names can be specified only for : interval dimension-value
types.

If dimension-value-place is specified as a function without a qualifying slot-name, function is called
with the unit instance rather than a slot value. In this case, function is responsible for handling any
unbound slots that it references, returning unbound-value-indicator when appropriate.

Each superclass-name argument specifies a direct superclass of the new class. If the superclass list is
empty, then the direct superclass defaults to the single class standard-unit-instance.

The :metaclass class option, if specified, must be a subclass of standard-unit-class. The default
metaclass value is standard-unit-class.

Inheritance of class options

The set of dimensional-values for a unit class is the union of the sets specified in the
dimensional-values options of the class and its superclasses. When more than one dimension-value
specification is supplied for a given dimension, the one supplied by the most specific class is used.

The effective initial-space-instances value for a unit class is the value specified in the definition of the
most specific unit class. (No additive inheritance of initial-space-instances is performed.) If no
definitions specify an initial-space-instances value, nil is used.

The instance-name-comparison-test value is not inherited. If no value is specified in the unit-class
definition, the default initialization value associated with the metaclass is used.

If a retain value is not specified, a value of : propagate is used as the default if any parent
unit classes have a : propagate retention value; otherwise nil is used as the default value.

The use-global-instance-name-counter value is not inherited. If no value is specified in the unit-class
definition, the default initialization value associated with the metaclass is used.

See also

define-space-class (page 438)
define-class (page 83)
delete-blackboard-repository (page 442)
deleted-unit-instance (page 337)
find-all-instances-by-name (page 479)
find-instance-by-name (page 481)

GBBopen 1.5 Reference
332 5 GBBopen Core

define-unit-class

link-slot-p (page 387)
make-instance (page 364)
standard-unit-class (page 369)
standard-unit-instance (page 370)

with-generate-accessors-format (page 136)

Examples
Define a unit class, hyp, that illustrates a number of define-unit-class capabilities:

> (define-unit-class hyp ()
((belief :initform 0.0)
(location :initform nil)
(velocity-range)
(color)
(classification :initform ' (:car :truck :bus :motorcycle :train
:duck-boat
:lawn-mower :anything))
(supporting-hyps
:1link (hyp supported-hyps))
(supported-hyps
:1link (hyp supporting-hyps)))
(:dimensional-values
(belief :point belief)
(velocity-range :interval velocity-range)
(color (:element eq) color)
(classification (:element eq) :set classification)
(x (:point fixnum) #’location.x location)
(y (:point fixnum) #’location.y location))
(:initial-space-instances (bb hyps)))
#<standard-unit-class hyp>
>

Define a unit class, word, whose instances are indexed by the word’s individual characters in an
enumerated dimension and the code-char values of the individual characters in an
ordered dimension:

> (define-unit-class word ()
((string :initform "what’s"))
(:dimensional-values
(character :element :set string)
(char-code (:point fixnum) :set
#’ (lambda (string)
(map ’list #’char-code string))
string))
(:initial-space-instances (words)))
#<standard-unit-class word>
>

define-unit-class

GBBopen 1.5 Reference
5 GBBopen Core 333

delete-instance unit-instance = deleted-unit-instance [Generic Function]

Purpose
Delete a unit instance.

Method signatures
delete-instance (unit-instance deleted-unit—-instance) = deleted-unit-instance

delete-instance (unit-instance standard-unit-instance) = deleted-unit-instance
delete-instance (space-instance standard-space—instance) = deleted-unit-instance

Package :gbbopen
Module :gbbopen-core

Arguments
unit-instance The unit instance (or space instance) to be deleted

deleted-unit-instance The deleted unit-instance object, whose class has been changed to a
deleted-unit-instance unless *skip-deleted-unit-instance-class-change® is true

Returns
The deleted instance deleted-unit-instance.

Events

A delete-instance—event is signaled at the start of the deletion process and an
instance-deleted-event is signaled when the deletion has been completed. The following events
may also be signaled:

e unlink-event

e instance-removed-from-space—-instance-event

Description

If *skip-deleted-unit-instance-class-change™ is nil, the generic function
deleted-instance-class is called by delete-instance to determine the class to be used as the
changed class for the deleted-unit-instance.

See also

skip-deleted-unit-instance-class-change (page 324)
delete-all-space-instances (page 444)
delete-blackboard-repository (page 442)
delete-space-instance (page 445)
deleted-instance-class (page 336)
deleted-unit-instance (page 337)
make-instance (page 364)
reset-gbbopen (page 461)
reset-unit-class (page 367)

GBBopen 1.5 Reference
334 5 GBBopen Core

delete-instance

Example
Create, then delete, a hyp unit instance:

> (delete-instance (make-instance ’'hyp :location ’ (896 388) :belief .68))
#<deleted-unit-instance hyp 311>
>

delete-instance

GBBopen 1.5 Reference
5 GBBopen Core 335

deleted-instance-class unit-instance = class [Generic Function]

Purpose
Return the class to be used for a deleted unit instance.

Method signatures
deleted-instance-class (unit-instance standard-unit-instance) =
#<standard-class deleted-unit—-instance>

Package :gbbopen
Module :gbbopen-core

Arguments
unit-instance The unit instance (or space instance) to be deleted

class A class or a non-nil, non-keyword symbol that names a class (the default method
returns the class deleted-unit-instance)

Returns
The class or symbol naming the class to be used as the changed class for the deleted instance.

Description

This generic function is called by delete-instance to determine the class to be used as the changed
class for a deleted unit instance. The returned class must be a subclass of deleted-unit-instance,
but it must not be a subclass of standard-unit-instance.

See also

delete-instance (page 334)
deleted-unit-instance (page 337)

Example

Define a class to be used for deleted hyp unit instances and a deleted-instance-class method to use
deleted-hyp as the class for deleted hyp (and subclasses of hyp) unit instances:

> (define-class deleted-hyp (deleted-unit-instance)
(location
classification
supporting-hyps)
#<standard-class deleted-hyp>
> (defmethod deleted-instance-class ((hyp hyp))
(load-time-value (find-class ’deleted-hyp)))
deleted-instance-class
>

GBBopen 1.5 Reference
336 5 GBBopen Core

deleted-unit-instance [Class]

Package :gbbopen
Module :gbbopen-core

Description

The class deleted-unit-instance is an instance of standard-class and an instance of
deleted-unit-instance represents a deleted unit instance or space instance. It is a subclass of
standard-gbbopen-instance.

See also

delete-instance (page 334)
standard-gbbopen-instance (page 126)
standard-space-instance (page 464)
standard-unit-instance (page 370)

GBBopen 1.5 Reference
5 GBBopen Core 337

describe-instance unit-instance

Purpose

Describe a unit instance (or a space instance, as a unit instance).

Method signatures

[Generic Function]

describe-instance (unit-instance standard-unit-instance) &optional stream

Package :gbbopen
Module :gbbopen-core

Arguments
unit-instance A unit instance (or space instance)
stream A stream (default is xstandard-output *)

Description

The description is printed to the output stream.
See also

describe-instance-slot-value (page 340)
describe-space-instance (page 448)
describe-space-instance-storage (page 449)
make-instance (page 364)
make-space-instance (page 455)
Example

Describe the hyp unit instance:

> (describe-instance hyp)
Hyp #<hyp 419 (1835 4791) 0.85 [5..35]>
Instance name: 419
Space instances: ((bb hyps))
Dimensional values:
belief: 0.85

classification: (:car :truck)
color: :red

velocity-range: (5 35)

X: 1835

y: 4791

Non—-link slots:
belief: 0.85

classification: (:car :truck)
color: :red

location: (1835 4791)
velocity-range: (5 35)

Link slots:
supported-hyps: nil

338

GBBopen 1.5 Reference
5 GBBopen Core

describe-instance

supporting-hyps: (#<hyp 183 (1835 4791) 0.82 [0..35]>
#<hyp 233 (1835 4791) 0.89 [5..35]>)
Space instances: (#<standard-space-instance (bb hyps)>)
>
REPL Note

Describe-instance can be invoked using the REPL command:

:di instance| {instance-name [unit-classes—specifierl]}

which also sets = to the described unit instance.

describe-instance

GBBopen 1.5 Reference
5 GBBopen Core 339

describe-instance-slot-value unit-instance slot-name value [Generic Function]
&optional stream

Purpose
Customize slot-value printing by describe-instance.

Method signatures
describe-instance-slot-value (unit-instance standard-unit-instance) slot-name value
&optional stream

Package :gbbopen
Module :gbbopen-core

Arguments

unit-instance A unit instance (or space instance)
slot-name A non-nil, non-keyword symbol

value An object

stream A stream (default is *standard-output *)

Description

Describe-instance-slot-value is called by describe-instance to print each slot value; it should not
be called directly. The slot-value representation is printed to the output stream.

See also

describe-instance (page 338)

Example
Describe the observation—-duration slot of a hyp unit instance as a human-readable duration:

(defmethod describe—-instance-slot-value
((hyp hyp)
(slot—-name (eql ’'observation-duration)) wvalue
&optional (stream *standard-output=))
(1f value
(pretty-duration duration 5 stream)
(prinl nil stream)))

GBBopen 1.5 Reference
340 5 GBBopen Core

describe-unit-class unit-class-name [Generic Function]

Purpose
Print information about a unit class.

Method signatures
describe-unit-class (unit-class-name symbol)

describe-unit-class (unit-class-specifier cons)

describe-unit-class (unit-class standard-unit-class)
Package :gbbopen
Module :gbbopen-core

Arguments
unit-class-name A unit-class or an extended unit-classes specification (see below)

Detailed syntax

unit-classes-specifier ::= t | single-unit-class-specifier | (single-unit-class-specifier™)
single-unit-class-specifier ::= atomic-unit-class | (atomic-unit-class subclassing-specifier)
atomic-unit-class ::= unit-class | unit-class-name

subclassing-specifier ::= :plus-subclasses | :no-subclasses |+ | =

The shorthand + subclasses specifier is equivalent to :plus—subclasses and =to :no—-subclasses.

Description
The description is printed to the *standard-output* stream.

Example

> (describe-unit-class ’hyp)
Standard-unit-class #<standard-unit-class hyp>
Direct superclasses:
standard-unit-instance (abstract)
Direct subclasses: None
Direct nonlink slots:
belief
:allocation :instance
:initargs (:belief)
rinitform 0.0
:readers (belief-of)
:writers ((setf belief-of))
classification
:allocation :instance
:initargs (:classification)
:initform ’ (:car :truck :bus :motorcycle :train :duck-boat :lawn-mower
:anything)
:readers (classification-of)
:writers ((setf classification-of))
color

GBBopen 1.5 Reference
5 GBBopen Core 341

342

:allocation :instance
(:color)
(color-of)

((setf color-of))

:initargs
:readers
:writers
location
:allocation :instance
:initargs (:location)
:initform nil
:readers (location-of)
:writers ((setf location—-of))
velocity-range
:allocation
(:velocity-range)
(velocity—-range-of)
((setf velocity-range-of))

:instance
:initargs
:readers
:writers

Direct link slots:

supported-hyps
:allocation
:initargs (:supported-hyps)
:initform nil
:readers (supported-hyps-of)
:writers ((setf supported-hyps-of))
:1link (hyp supporting-hyps)
supporting-hyps
tallocation :instance
rinitargs (:supporting-hyps)
:initform nil
:readers (supporting-hyps-of)
:writers ((setf supporting-hyps-of))
:1link (hyp supported-hyps)

:instance

Effective nonlink slots:

belief
:allocation :instance
:initargs (:belief)
:initform 0.0

classification
tallocation :instance
tinitargs (:classification)
:initform ' (:car :truck :bus

ranything)

:motorcycle

color
:allocation
:initargs (:color)
instance—-name
:allocation
:initargs (:instance—name)
location
:allocation
:initargs (:location)
rinitform nil
velocity—-range
:allocation

:instance

:instance

:instance

:instance

:train

describe-unit-class

:duck-boat :lawn-mower

GBBopen 1.5 Reference
5 GBBopen Core

describe-unit-class

:initargs (:velocity-range)
Effective link slots:
supported-hyps
:allocation :instance
:initargs (:supported-hyps)
rinitform nil
supporting-hyps
tallocation :instance
:initargs (:supporting-hyps)
rinitform nil
Dimensional values:
belief (:point number)

classification (:element eq) :set

color (:element eq)

velocity-range (:interval number)
X (:point fixnum)
y (:point fixnum)

Effective dimensional values:
belief (:point number)

classification (:element eq) :set
color (:element eq)
velocity-range (:interval number)
X (:point fixnum)
y (:point fixnum)

Initial space instances:
(bb hyps)

Effective initial space instances:
(bb hyps)

Retain: nil

GBBopen 1.5 Reference
5 GBBopen Core

describe-unit-class

343

dimensions-of space-instance-or-unit-classes-specifier [Generic Function]
= dimension-specifications-list

Purpose
Return the dimension specifications of a space instance or one or more unit classes.

Method signatures
dimensions-of (space-instance standard-space-instance) = dimension-specifications-list

dimensions-of (unit-classes-specifier cons) = dimension-specifications-list
dimensions-of (unit-class standard-unit-class) = dimension-specifications-list

Package :gbbopen
Module :gbbopen-core

Arguments

space-instance-or-unit-classes-specifier A space instance, an extended unit-classes specification or a
list of extended unit-classes specifications

dimension-specifications-list A proper list

Returns
Alist of (dimension—-name (dimension-type comparison-type)) pairs.

See also
define-unit-class (page 330)
make-space-instance (page 455)

instance-dimension-value (page 354)
instance-dimension-values (page 356)

Examples
Return the dimensions defined for instances of unit class hyp:

> (dimensions—-of ’hyp)

((x (:ordered fixnum)) (y (:ordered fixnum)) (belief (:ordered number))
(velocity-range (:ordered number)) (color (:enumerated eq))
(classification (:enumerated eq)))

>

Return the dimensions of the (bb hyps) space instance:

> (dimensions-of (find-space-instance-by-path ’ (bb hyps)))

((x (:ordered fixnum)) (y (:ordered fixnum)) (belief (:ordered number))
(velocity-range (:ordered number)) (color (:enumerated eq))
(classification (:enumerated eq)))

>

Note that the dimensions of a space instance (its dimensional extent as a container for other
unit instances) is independent of any dimension values that the space instance might have as a
unit instance:

GBBopen 1.5 Reference
344 5 GBBopen Core

dimensions-of

> (instance-dimension-values (class-of (find-space-instance-by-path ’ (bb

hyps))))
nil
>

or the dimensions that the unit class of the space instance might have:

> (dimensions-of (class-of (find-space-instance-by-path ’ (bb hyps))))
nil
>

Note

The returned list of dimension specifications for a space instance or for a unit class should not be
destructively altered.

dimensions-of

GBBopen 1.5 Reference
5 GBBopen Core 345

direct-nonlink-slot-definition [Metaobject Class]

Package :gbbopen
Module :gbbopen-core

Description

The class direct-nonlink-slot-definition is the default direct nonlink-slot-definition
metaobject class of unit classes created by define-unit-class. Direct-nonlink-slot-definition is a
subclass of gbbopen-direct-slot-definition.

See also

direct-link-definition (page 379)
effective-nonlink-slot-definition (page 347)
gbbopen-direct-slot-definition (page 348)

GBBopen 1.5 Reference
346 5 GBBopen Core

effective-nonlink-slot-definition [Metaobject Class]

Package :gbbopen
Module :gbbopen-core

Description

The class effective-nonlink-slot-definition is the default effective nonlink-slot-definition
metaobject class of unit classes created by define-unit-class. Effective-nonlink-slot-definition is
a subclass of gbbopen-effective-slot-definition.

See also

direct-nonlink-slot-definition (page 346)
effective-link-definition (page 380)
gbbopen-effective-slot-definition (page 349)

GBBopen 1.5 Reference
5 GBBopen Core 347

gbbopen-direct-slot-definition [Metaobject Class]

Package :gbbopen
Module :gbbopen-core

Description
The class gbbopen-direct-slot-definition is the parent class of direct-link-definition and
direct-nonlink-slot-definition.

See also

direct-link-definition (page 379)
direct-nonlink-slot-definition (page 346)
gbbopen-effective-slot-definition (page 349)

GBBopen 1.5 Reference
348 5 GBBopen Core

gbbopen-effective-slot-definition [Metaobject Class]

Package :gbbopen
Module :gbbopen-core

Description
The class gbbopen-effective-slot-definition is the parent class of effective-link-definition and
effective-nonlink-slot-definition.

See also

effective-link-definition (page 380)
effective-nonlink-slot-definition (page 347)
gbbopen-direct-slot-definition (page 348)

GBBopen 1.5 Reference
5 GBBopen Core 349

gbbopen-implementation-version <no arguments> = string

Purpose
Return the GBBopen implementation version.

Package :gbbopen
Module :gbbopen-core

Arguments
string A string

Returns
The GBBopen implementation-version string

Example
Return the GBBopen implementation-version string:

> (gbbopen-implementation-version)
"1.0"
>

350

[Function]

GBBopen 1.5 Reference
5 GBBopen Core

incomplete-instance-p unit-instance = boolean

Purpose

Determine if a unit instance is incomplete.
Packoge :gbbopen

Module :gbbopen-core

Arguments
unit-instance A unit instance
boolean A generalized boolean

Returns
True if the unit instance is incomplete; ni1l otherwise.

See also
instance-deleted-p (page 353)

Example

[Function]

Define an event function that recomputes the area of a complete unit instance when the value of its

height or width slot changes:

(defun update—-area-evfn (event-name
&key instance
&allow—other—-keys)
(declare (ignore event-name))
;7 Do not compute the area of an incomplete instance:
(unless (incomplete—-instance instance)
(setf (area-of instance)

(# (width-of instance) (height-of instance)))))

(add-event-function ’'update-area-evfn
"rectangle
:slot—-names ’ (width height))

GBBopen 1.5 Reference
5 GBBopen Core

351

initial-class-instance-number unit-class-name-or-instance = integer [Generic Function]
Purpose
Return the initial instance-name counter value associated with a unit class.

Method signatures
initial-class-instance-number (unit-class-name symbol) = integer

initial-class-instance-number (unit-instance standard-unit-instance) = 0
Package :gbbopen

Module :gbbopen-core

Arguments

unit-class-name-or-instance A unit instance or a symbol naming a unit class
integer An integer

Returns

The initial instance-name counter value associated with the unit class.

See also
next-class-instance-number (page 366)
make-instance (page 364)
Examples

Return the initial instance-name value associated with unit class ksa:

> (initial-class—-instance—-number ’'ksa)
0
>

Note

The initial instance-name value associated with a unit class is not used if the
:use—-global-instance—name—counter class option is true for the unit class.

GBBopen 1.5 Reference
352 5 GBBopen Core

instance-deleted-p unit-instance = boolean
Purpose

Determine if a unit instance has been deleted.
Package :gbbopen

Module :gbbopen-core

Arguments
unit-instance A unit instance
boolean A generalized boolean

Returns
True if the unit instance is deleted; nil otherwise.

See also
skip-deleted-unit-instance-class-change (page
check-for-deleted-instance (page
delete-instance (page
incomplete-instance-p (page
Example

Create, then delete, then check, a hyp unit instance:

> (instance-deleted-p (delete-instance
t
>

GBBopen 1.5 Reference
5 GBBopen Core

324)
327)
334)
351)

(make—-instance

"hyp)))

[Function]

353

instance-dimension-value unit-instance dimension-name [Function]
= dimension-value, dimension-value-type, comparison-type, composite-type, | ordering-

Purpose
Obtain a dimension value of a unit instance.

Package :gbbopen
Module :gbbopen-core

Arguments

unit-instance A unit instance

dimension-name A symbol specifying a dimension of unit-instance

dimension-value An object

dimension-value-type One of: :point, :interval, :mixed, :element, or :boolean

comparison-type One of: number, fixnum, short-float, single-float, double-float,
long-float, or pseudo-probability

composite-type One of :set, :sequence, (:ascending-series ordering-dimension-name),
(:descending-series ordering-dimension-name), or nil

ordering-dimension-name A non-keyword symbol or nil

Returns
Five values:

e the dimension value of the unit-instance in the specified dimension
e the dimension-value type of the specified dimension
e the comparison type of the specified dimension

e the composite type of the dimension value if it is a composite dimension value; nil if it is an
incomposite dimension value

e the name of the ordering dimension, if the dimension value is a
series-composite dimension value; nil otherwise

Errors
The dimension dimension-name is not defined for unit-instance.

See also
define-unit-class (page 330)
dimensions-of (page 344)
instance-dimension-values (page 356)
make-instance (page 364)
Examples
Return the x dimension value of the unit instance, hyp:
> (instance-dimension-value hyp ’x)
1835
:point
: fixnum

GBBopen 1.5 Reference
354 5 GBBopen Core

instance-dimension-value

nil
nil

and its classification dimension value:

>
(:car :truck)
:element

eq

:set

nil

>

Return the character dimension value of the unit instance, word:

> (instance-dimension-value w ’'character)

"what’s"
:element
eql

:set

nil

>

and its char—-code dimension value:

> (instance-dimension-value word ’'char—-code)

(119 104 97 116 39 115)
:point

fixnum

:set

nil

>

GBBopen 1.5 Reference
5 GBBopen Core

(instance-dimension-value hyp ’'classification)

instance-dimension-value

355

instance-dimension-values unit-instance soptional dimension-names [Function]
= dimension-values-alist

Purpose
Return dimension values of a unit instance.

Packoge :gbbopen

Module :gbbopen-core

Arguments
unit-instance A unit instance
dimension-names A list of symbols naming dimensions of unit-instance or t, indicating all

dimensions of unit-instance (default is t)
dimension-values-alist An association list

Returns
An association list of dimension name and dimension value pairs.

Errors
A dimension name specified in dimension-names is not defined for unit-instance.

See also

define-unit-class (page 330)
dimensions-of (page 344)
instance-dimension-value (page 354)
make-instance (page 364)
Examples

Return all dimension values of the unit instance, hyp:
> (instance-dimension-values hyp)
((belief . 0.85) (velocity-range 5 35) (color . :red)
(classification :car :truck) (x . 1835) (y . 4791))
>

Return the x and y dimension values of the unit instance, hyp:
> (instance-dimension-values hyp ' (x y))
((x . 1835) (y . 4791))

>

Return all dimension values of the unit instance, word:

> (instance-dimension-values word)
((character . "what’s") (char—-code 119 104 97 116 39 115))
>

Note
Using instance-dimension-value is preferable to using instance-dimension-values when
obtaining individual dimension values of a unit instance.

GBBopen 1.5 Reference
356 5 GBBopen Core

instance-name-of unit-instance = instance-name [Generic Accessor]

Purpose
Return the instance name of a unit instance.

Seftf syntax
(setf (instance-name-of instance) instance-name) = instance-name

Method signatures
instance-name-of (unit-instance standard-event—instance) = instance-name

instance-name-of (unit-instance standard-unit-instance) = instance-name
Package :gbbopen
Module :gbbopen-core

Arguments
unit-instance A unit instance or an event instance
instance-name An object

Returns
The instance name of the unit-instance.

Errors

The supplied instance-name provided to (setf instance-name-of) is identical to the instance name of
an existing unit instance of the same class as unit-instance.

See also

make-instance (page 364)

Examples
Return the instance names of the unit instances supporting hyp unit instance 180:

> (mapcar #’instance-name-of

(supporting-hyps-of (find-instance-by-name "hyp 180)))
(123 158 94)
>

Change the instance name of hyp 180 to "bogus-180":

> (setf (instance-name-of (find-instance-by-name 180 "hyp)) "bogus-180")
"bogus-180"
>

GBBopen 1.5 Reference
5 GBBopen Core 357

make-duplicate-instance instance unduplicated-slot-names s&rest initargs [Generic Function]
s&key &allow-other—-keys = new-instance, slots

Purpose
Create a duplicate instance of instance.

Method signatures

make-duplicate-instance (instance standard-object) unduplicated-slot-names srest initargs
= new-instance, slots

make-duplicate-instance (instance standard-space—instance) unduplicated-slot-names srest
initargs = new-instance, slots

make-duplicate-instance (instance standard-unit-instance) unduplicated-slot-names srest
initargs = new-instance, slots

make-duplicate-instance : around (instance standard-unit-instance) unduplicated-slot-names
s&rest initargs = new-instance, slots

Package :gbbopen-tools (re-exported by : gbbopen)

:gbbopen-tools (the unit-instance and space-instance methods are added by
Module (the unit-inst. d inst thod dded b
:gbbopen-core)

Arguments

instance A standard-object instance
unduplicated-slot-names A list of slot names
initargs An initialization argument list
new-instance A standard-object instance
slots A proper list of slot objects
Returns

Two values: the (newly created) duplicate instance and a list of the slots that were duplicated or
explicitly initialized.

Events
When a unit instance is duplicated, events are signaled in the following sequence:
1. An nonlink-slot-updated-event or link—event is signaled for each initialized slot in the

duplicated unit instance. A 1ink—event is also signaled for each inverse pointer from an
existing unit instance to the (newly created) duplicate unit instance.

2. An instance-added-to-space-instance-event is signaled for each space instance on
which the duplicate unit instance is added.

3. A instance-created-event is signaled.

Errors
Use of an initialization argument that has not been declared as valid.

Description

Slot initialization during instance duplication behaves as follows, regardless of whether the slots are
local or shared:

GBBopen 1.5 Reference
358 5 GBBopen Core

make-duplicate-instance

e If an initarg in initargs specifies a value for a slot, that value is stored into the slot in the
duplicated instance.

e All slots in the duplicated instance that are unbound at this point and that are not named in
unduplicated-slot-names or in the list of slot-names returned from calling
unduplicated-slot-names on instance are set to the value of the slot in instance.

e Any slots that remain unbound and are named in unduplicated-slot-names or in the list of
slot-names returned from calling unduplicated-slot-names on instance are initialized
according to their : initform forms.

When duplicating a unit instance, specifying a : instance-name initialization argument causes that
value to be used as the instance name of the newly created unit instance instead of the instance-name
counter value associated with the unit class (if the :use-global-instance-name—counter class
option is nil or was not specified for the unit class) or the global instance-name counter value (if the

:use—global-instance—-name-counter class option is true for the unit class).

A :space-instances initialization argument must be provided when duplicating a space instance.

See also

change-class (page 325)
delete-instance (page 334)
describe-instance (page 338)
initial-class-instance-number (page 352)
instance-name-of (page 357)
make-duplicate-instance-changing-class (page 361)
make-instance (page 364)
make-space-instance (page 455)
next-class-instance-number (page 366)
unduplicated-slot-names (page 371)
Examples

Create some simple duplicate instances:

> (define-class foo ()
((a :initform 1)
(b :initform 2)))
#<standard-class foo>
> (defparameter *x* (make—-instance ’'foo :a 11 :b 12))
* X *
> :ds *xx%
#<foo #x110febea> is an instance of #<standard-class foo>:
The following slots have :instance allocation:
a 11
b 12
> :ds (make-duplicate-instance #*x* nil :a -1)
#<foo #x110ff93a> is an instance of #<standard-class foo>:
The following slots have :instance allocation:

a -1
b 12
> :ds (make-duplicate-instance *xx% ' (b) :a -1)

#<foo #x11104542> is an instance of #<standard-class foo>:
The following slots have :instance allocation:

GBBopen 1.5 Reference
5 GBBopen Core

359

make-duplicate-instance

a -1
b 2
> :ds (make-duplicate-instance #*xx ' (b))
#<foo #x11108c82> is an instance of #<standard-class foo>:
The following slots have :instance allocation:
a 11
b 2
> (make-duplicate-instance *xxx nil)
#<foo @ #x1110a0e2>
(#<standard-effective-slot—-definition b>
#<standard-effective-slot-definition a>)
>

Create a duplicate of the hyp 419 unit instance:

> (make-duplicate-instance (find-instance-by-name 19 "hyp) nil)
#<hyp 681 (1835 4791) 0.85 [5..35]>
>

make-duplicate-instance

GBBopen 1.5 Reference
360 5 GBBopen Core

make-duplicate-instance-changing-class instance new-class [Generic Function]
unduplicated-slot-names
&rest Initargs
&key &allow—other-keys
= new-instance, slots

Purpose
Create a duplicate instance of instance, changing its class to new-class in the process.

Method signatures
make-duplicate-instance-changing-class (instance standard-object) (new-class class)
unduplicated-slot-names srest initargs
= new-instance, slots
make-duplicate-instance-changing-class (instance standard-object) (new-class
standard-space-class) unduplicated-slot-names &rest
initargs = new-space-instance, slots
make-duplicate-instance-changing-class (instance standard-object) (new-class
standard-unit—-class) unduplicated-slot-names srest
initargs = new-unit-instance, slots
make-duplicate-instance-changing-class (instance standard-object) (new-class symbol)
unduplicated-slot-names srest initargs
= new-instance, slots
make-duplicate-instance-changing-class : around (instance standard-unit-instance) (new-class
standard-unit—-class) unduplicated-slot-names srest
initargs = new-unit-instance, slots

Package :gbbopen-tools (re-exported by : gbbopen)

:gbbopen-tools e unit-instance and space-instance methods are added by
Module (the unit-inst d inst thod dded b
:gbbopen-core)

Arguments

instance A standard-object instance
new-class A class designator
unduplicated-slot-names A list of slot names
initargs An initialization argument list
new-instance A standard-object instance
slots A proper list of slot objects
Returns

Two values: the (newly created) duplicate instance and a list of the slots that were duplicated or
explicitly initialized.

Events
When a unit instance is duplicated, events are signaled in the following sequence:
1. An nonlink-slot-updated-event or link—event is signaled for each initialized slot in the

duplicated unit instance. A 1ink-event is also signaled for each inverse pointer from an
existing unit instance to the (newly created) duplicate unit instance.

GBBopen 1.5 Reference
5 GBBopen Core 361

make-duplicate-instance-changing-class

2. An instance-added-to-space-instance-event is signaled for each space instance on
which the duplicate unit instance is added.

3. A instance-created-event is signaled.

Errors
Use of an initialization argument that has not been declared as valid.

Description

Slot initialization during instance duplication behaves as follows, regardless of whether the slots are
local or shared:

e If an initarg in initargs specifies a value for a slot, that value is stored into the slot in the
duplicated instance.

e All slots in the duplicated instance that are unbound at this point and that are not named in
unduplicated-slot-names or in the list of slot-names returned from calling
unduplicated-slot-names on instance are set to the value of the slot in instance.

e Any slots that remain unbound at this point and that are defined for new-class instances but not
for instance or are named in unduplicated-slot-names or in the list of slot-names returned from
calling unduplicated-slot-names on instance are initialized according to their : initform
forms.

When creating (duplicating) a new unit instance, specifying a : instance—-name initialization
argument causes that value to be used as the instance name of the newly created unit instance
instead of the instance-name counter value associated with the unit class (if the
:use—-global-instance—-name—counter class option is nil or was not specified for the unit class)
or the global instance-name counter value (if the :use-global-instance—name-counter class
option is true for the unit class).

A :space-instances initialization argument must be provided when creating a new a
space instance.

See also

change-class (page 325)
delete-instance (page 334)
describe-instance (page 338)
initial-class-instance-number (page 352)
instance-name-of (page 357)
make-duplicate-instance (page 358)
make-instance (page 364)
make-space-instance (page 455)
next-class-instance-number (page 366)
unduplicated-slot-names (page 371)
Examples

Create some simple duplicate instances:

> (define-class foo ()
((a :initform 1)
(b :initform 2)))
#<standard-class foo>
> (define-unit-class bar ()

GBBopen 1.5 Reference
362 5 GBBopen Core

make-duplicate-instance-changing-class

((a :initform 1)
(b :initform 2)))
#<standard-class bar>
> (defparameter *xx (make-—-instance ’'foo :a 11 :b 12))
* X *
> :ds *xx%
#<foo #x110febea> is an instance of #<standard-class foo>:
The following slots have :instance allocation:
a 11
b 12

> :ds (make-duplicate-instance-changing-class *x* ’'foo nil :a -1)

#<foo #x110ff93a> is an instance of #<standard-class foo>:
The following slots have :instance allocation:

a -1

b 12

> :ds (make-duplicate-instance-changing-class xx* ’‘bar nil :b 2)

#<bar #x11100032> is an instance of #<standard-unit-class bar>:
The following slots have :instance allocation:

a 11

b 2

> :ds (make-duplicate-instance-changing-class xx*x ’"bar ' (b) :a -1)

#<bar #x11104542> is an instance of #<standard-unit-class bar>:
The following slots have :instance allocation:
a -1
b 2
> :ds (make-duplicate-instance-changing-class *xx ’"bar ' (b))
#<bar #x11108c82> is an instance of #<standard-unit-class foo>:
The following slots have :instance allocation:
a 11
b 2
> (make-duplicate-instance-changing-class xx*x "bar nil)
#<bar @ #x1110a0e2>
(#<standard-effective-slot-definition b>
#<standard-effective-slot—-definition a>)
>

Create a duplicate of the hyp 419 unit instance as a probable—hyp?’

> (make-duplicate-instance-changing-class
(find-instance-by-name 19 ’'hyp)
"possible-hyp nil)

#<possible-hyp 681 (1835 4791) 0.85 [5..35]>

>

make-duplicate-instance-changing-class

GBBopen 1.5 Reference
5 GBBopen Core

363

make-instance class srest initargs skey &allow—other—keys = instance [Generic Function]

Purpose
Create a new instance of class, such as a new unit instance.

Method signatures
make-instance (class standard-class) &rest Initargs = instance

make-instance (class symbol) &rest initargs = instance
Package :gbbopen
Module :gbbopen-core

Arguments
class A class designator
initargs An initialization argument list

instance A standard-object instance

Returns
The newly created instance of class.

Events
When a unit instance is created, events are signaled in the following sequence:

1. An nonlink-slot-updated-event or link—event is signaled for each initialized slot in the
newly created unit instance. A 1ink-event is also signaled for each inverse pointer from an
existing unit instance to the newly created unit instance.

2. An instance-added-to-space-instance-event is signaled for each space instance on
which the newly created unit instance is added.

3. A instance-created-event is signaled.

Errors
Use of an initialization argument that has not been declared as valid.

If class is a unit class and the supplied or generated instance name is identical to the instance name
of an existing unit instance of class.

Description

Specifying a : space-instances initialization argument causes that value to be used instead of the
:initial-space—instances specification associated with the unit class. Similarly, specifying a
:instance—name initialization argument causes that value to be used as the instance name of the
newly created unit instance instead of the instance-name counter value associated with the unit class
(if the :use—-global-instance—-name—counter class option is nil or was not specified for the unit
class) or the global instance-name counter value (if the :use—global-instance-name—counter
class option is true for the unit class).

GBBopen 1.5 Reference
364 5 GBBopen Core

make-instance

See also

change-class
define-event-class
define-unit-class
define-space-class
delete-instance
describe-instance

initial-class-instance-number

instance-name-of
make-duplicate-instance

(page
(page
(page
(page
(page
(page
(page
(page
(page

make-duplicate-instance-changing-class (page

make-space-instance
next-class-instance-number

Example

Create a new hyp unit instance:

> (make—-instance ’'hyp

:location (list x y)

:classification ’ (:car

:color ' :gray
:belief .85

(page
(page

rtruck)

:velocity-range ’ (5 35)
:supporting-hyps supporting-hyps)

#<hyp 419 (1835 4791)
>

Note

0.85

[5..35]>

325)
394)
330)
438)
334)
338)
352)
357)
358)
361)
455)
366)

The function make-space-instance provides a clear and convenient shorthand for creating

space instances.

GBBopen 1.5 Reference
5 GBBopen Core

make-instance

365

next-class-instance-number unit-class-name-or-instance = integer [Generic Function]
Purpose
Increment and return the instance-name counter value associated with a unit class.

Method signatures
next-class-instance-number (unit-class-name symbol) = integer

next-class-instance-number (unit-instance standard-unit-instance) = integer
Package :gbbopen

Module :gbbopen-core

Arguments

unit-class-name-or-instance A unit instance or a symbol naming a unit class
integer An integer

Returns

The incremented instance-name counter value associated with the unit class.

See also

change-class (page 325)
class-instances-count (page 329)
initial-class-instance-number (page 352)
make-instance (page 364)
Examples

Increment and return the next instance-name number of unit instances of ksa:

> (next-class—-instance—-number ’'ksa)
8
>

Change the class of unit instance hyp from probable-hyp to rejected-hyp:

> (change-class hyp ’rejected-hyp

:instance-name (next-class-instance-number ’rejected-hyp))
#<rejected-hyp 1409 (896 388) .68>
>

Note that the : instance—name initarg can be eliminated if both the old and new classes for hyp are
using the global instance-name counter.

Note

The next-class-instance-number function increments the global instance-name counter value if the
:use—-global-instance—name—counter class option is true for the unit class.

GBBopen 1.5 Reference
366 5 GBBopen Core

reset-unit-class unit-class-or-name [Generic Function]

Purpose
Resets the unit-class instance-name counter of unit-class to its initial value.

Method signatures
reset-unit-class (unit-class-name symbol)

reset-unit-class (unit-class-specifier cons)

reset-unit-class (unit-class standard-unit—-instance)
Package :gbbopen
Module :gbbopen-core

Arguments
unit-class A unit class

Description

The unit-class instance-name counter of unit-class is reset to the value returned by calling
initial-class-instance-number with unit-class, but only if the unit class is not abstract, if the
:use—-global-instance—-name—counter class option is nil or was not specified for the unit class,
and if there are no existing instances of that class. If instances do exist and the global instance-name
counter is not being used for the unit class, a warning is issued.

See also

delete-blackboard-repository (page 442)
initial-class-instance-number (page 352)
reset-gbbopen (page 461)

Example
Reset the instance-name counters of all unit classes:
> (reset-unit-class 't)

;; Warning: Unit class standard-space-instance has 4 instances; not reset
>

Note that a warning was issued when resetting standard-space-instance because 4 space instances
of that class exist.

GBBopen 1.5 Reference
5 GBBopen Core 367

space-instances-of unit-instance = space-instances [Function]

Purpose
Obtain the space instances on which a unit instance resides.

Package :gbbopen
Module :gbbopen-core

Arguments
unit-instance A unit instance
space-instances A proper list

Returns
The list of space instances on which unit-instance resides.

Example
Return the space instances on which the unit instance, unit-instance, resides:

> (space-instances-of unit-instance)
(#<standard-space-instance (bb hyps)>)
>

Note
The returned list of space instances should not be destructively altered.

GBBopen 1.5 Reference
368 5 GBBopen Core

standard-unit-class

Package :gbbopen
Module :gbbopen-core

Description

The class standard-unit-class is the default class of classes defined by define-unit-class. It is a

subclass of standard-class.

See also

define-unit-class (page
deleted-unit-instance (page
standard-unit-instance (page
standard-space-class (page

GBBopen 1.5 Reference
5 GBBopen Core

330)
337)
370)
463)

[Unit Class]

369

standard-unit-instance [Unit Class]

Package :gbbopen
Module :gbbopen-core

Description

The class standard-unit-instance is an instance of standard-unit-class and is a superclass of
every unit class that is an instance of standard-unit-class except itself. It is a subclass of
standard-gbbopen-instance.

A space instance is also a unit instance, so standard-space-instance is a superclass of
standard-unit-instance.

See also

deleted-unit-instance (page 337)
print-instance-slots (page 107)
standard-gbbopen-instance (page 126)
standard-space-instance (page 464)
standard-unit-class (page 369)

GBBopen 1.5 Reference
370 5 GBBopen Core

unduplicated-slot-names instance = unduplicated-slot-names [Generic Function]

Purpose

Add slot names of a class to the list of slots that are not duplicated by make-duplicate-instance and
make-duplicate-instance-changing-class.

Method signatures
unduplicated-slot-names (instance standard-object) = nil

unduplicated-slot-names (instance standard-space-instance) = unduplicated-slot-names

unduplicated-slot-names (instance standard-unit-instance) = unduplicated-slot-names
Package :gbbopen-tools (re-exported by : gbbopen)

Module :gbbopen-tools (the unit-instance and space-instance methods are added by
:gbbopen-core)

Arguments
instance A standard-object instance
unduplicated-slot-names A proper list

Returns
A list of unduplicated slot names for the class of instance.

See also

make-duplicate-instance (page 358)
make-duplicate-instance-changing-class (page 361)

Example

Specify that slot complex-unsaved-slot in my-unit-instance should be added to the list of slots
that are not duplicated by make-duplicate-instance and
make-duplicate-instance-changing-class:

(defmethod unduplicated-slot-names ((instance my-unit-instance))
(cons ’'complex—-unsaved-slot (call-next-method)))

GBBopen 1.5 Reference
5 GBBopen Core 371

with-changing-dimension-values (unit-instance [dimension-name®]) declaration™ [Macro]
form™ = result®

Purpose
Inform GBBopen that the dimension values of a unit instance potentially will be changed by the
evaluation of forms.

Packqge :gbbopen

Module :gbbopen-core

Arguments

unit-instance A unit instance

dimension-name A symbol specifying a dimension of unit-instance
declaration A declare expression (not evaluated)

forms An implicit progn of forms to be evaluated
results The values returned by evaluating the last form
Returns

The values returned by evaluating the last form.

Description

The locators for unit-instance are updated following the evaluation of the last form. Any retrieval
operations performed during the evaluation of forms will use the unit-instance locators as they
existed before evaluation of the first form. Retrievals performed by separate threads also should be
synchronized when using with-changing-dimension-values.

If dimension-names are specified, only the locators for those dimensions of unit-instance will be
checked and updated as needed. If no dimension-names are specified, the values of any or all
dimensions of unit-instance are assumed to have been potentially changed by forms.

See also

check-instance-locators (page 328)

Examples
Notify GBBopen that the x, v, and belief dimension values of hyp might be changed:
> (with-changing-dimension-values (hyp x y belief)
(setf (location-of hyp) ' (30 40))
(setf (belief-of hyp) 0.78))

0.78
>

Notify GBBopen that some dimension values of hyp might be changed (less efficient than the above, if
hyp unit instances have many dimensions):
> (with-changing-dimension-values (hyp)
(setf (location-of hyp) ' (36 52))
(incf (belief-of hyp) 0.05))
0.83
>

GBBopen 1.5 Reference
372 5 GBBopen Core

with-changing-dimension-values

with-changing-dimension-values

GBBopen 1.5 Reference
5 GBBopen Core 373

5.1 Links

This section contains : gbbopen—-core entities that pertain to links. A link represents a bi-directional
relationship between two unit instances using an outgoing pointer at each unit instance pointing to
the other. GBBopen’s link operators maintain the bi-directional consistency of link pointers.

GBBopen also allows a link-pointer object to be used as an outgoing link pointer. An application
developer can define a link-pointer object to hold attributes (such as “confidence” or “applicability
conditions”) that are associated with the outgoing pointer.

Attributes of a link relationship that are not directional (attributes that are to be the same when
obtained from either side of the link), are best represented by representing the “link” as a first-class
unit instance rather than by maintaining a link-pointer object on each end of the link that have
consistent values.

GBBopen 1.5 Reference
374 5.1 Links

check-all-instance-links soptional silentp errorp = problem-count [Function]

Purpose
Check the link slots of all unit instances for bi-directional consistency.

Packqge :gbbopen
Module :gbbopen-core

Arguments

silentp A generalized boolean (default is nil)
errorp A generalized boolean (default is nil)
problem-count An integer

Returns
The number of inconsistent links encountered.

Description

GBBopen automatically maintains bidirectional relationship consistency all link-slot definitions are
consistent. (Definitional consistency can be checked with check-link-definitions). Unintended
destructive list modification of the value of a link slot (for example, using sort without a protective
copy—1list) can break this consistency. Check-all-instance-links detects link inconsistencies and,
when errorp is true, assist in repairing them.

If a link inconsistency is found, details of the inconsistency are printed to *standard-output *.
If silentp is true, warning and summary messages are not printed. If silentp is nil and errorp is
true, a correctable error is signaled if a link inconsistency is found.

See also

check-link-definitions (page 377)

Examples
Check that all instance links are consistent:

> (check—-all-instance-1links)
; All instance links are consistent.

VvV O S

Check again, silently:

> (check—-all-instance-links ’t)
0
>

The result of checking when something has set the next-location link slot in 1ocation 20 tonil:

> (check-all-instance-1links)
Warning: Inverse link back to #<location 21 (32 37)> (link-slot
previous—-location)

GBBopen 1.5 Reference
5.1 Links 375

check-all-instance-links

from #<location 20 (28 28)> is missing in link-slot next-location

; 1 problem was found.

Vo

Repeat, but with errorp true to prompt for automated repair of each problem:

> (check-all-instance-links nil ’"t)
Error: Inverse link back to #<location 21 (32 37)> (link-slot

previous—-location)
from #<location 20 (28 28)> is missing in link-slot next-location

Restart actions (select using :c n):
0: Fix the inconsistency.

>> :c 0
Link to #<location 21 (32 37)> added.
1 problem was found.

rs
rs

1 repair was made.

14

’

1

> (check—-all-instance-1links)

;5 All instance links are consistent.
0

>

check-all-instance-links

GBBopen 1.5 Reference

376 5.1 Links

check-link-definitions soptional silentp errorp = boolean [Function]

Purpose
Check for consistency among link-slot definitions of unit classes.

Package :gbbopen
Module :gbbopen-core

Arguments

silentp A generalized boolean (default is nil)
errorp A generalized boolean (default is nil)
boolean A generalized boolean

Returns
True if all link-slot definitions are consistent; ni1l otherwise.

Description

If a link inconsistency is found, details of the inconsistency are printed to »standard-output *. For
clarity, only the first inconsistency is displayed. After the inconsistency has been repaired,
check-link-definitions should be used again to check for additional inconsistencies.

If silentp is true, warning and success printing or error signaling is supressed. If silentp is nil and
errorp is true, an error is signaled if a link inconsistency is found.

See also

define-unit-class (page 330)
check-all-instance-links (page 375)

Examples
Check for consistency in link-slot definitions in all unit classes:

> (check-link-definitions)
; All link definitions are consistent.

Vot o~

Create a link-slot inconsistency:

> (define-unit-class bad ()
((mismatched-1link :1link (missing inverse))))
bad
> (check-link-definitions)
;7 Warning: The inverse of link MISMATCHED-LINK in unit-class BAD refers
i to unit-class MISSING, which is not defined.
nil
>

Check again, generating an error on the inconsistency:

GBBopen 1.5 Reference
5.1 Links 377

check-link-definitions

> (check-link-definitions nil ’'t)

Error: The inverse of link MISMATCHED-LINK in unit-class BAD refers
to unit-class MISSING, which is not defined.

>>

Check again, silently:

> (check-link-definitions ’t)
nil
>

Define the missing unit class, but incorrectly:

> (define-unit-class missing () ((mismatched-link :link (missing bad))))
missing

> (check-link-definitions)

;7 Warning: The inverse of link MISMATCHED-LINK in unit-class MISSING

B refers to link BAD which is not present in unit-class MISSING.
nil

>

Fix the definition and check again:

> (define-unit-class missing () ((inverse :1link (bad mismatched-1link))))
#<standard-unit-class missing>

> (check-link-definitions)

; All link definitions are consistent.

Vot s

Check again, silently:

> (check-link-definitions ’t)
t
>

check-link-definitions

GBBopen 1.5 Reference
378 5.1 Links

direct-link-definition [Metaobject Class]

Package :gbbopen
Module :gbbopen-core

Description

The class direct-link-definition is the default direct link-definition metaobject class of unit classes
created by define-unit-class. Direct-link-definition is a subclass of
gbbopen-direct-slot-definition.

See also

effective-link-definition (page 380)
direct-nonlink-slot-definition (page 346)
gbbopen-direct-slot-definition (page 348)

GBBopen 1.5 Reference
5.1 Links 379

effective-link-definition [Metaobject Class]

Package :gbbopen
Module :gbbopen-core

Description

The class effective-link-definition is the default effective link-definition metaobject class of
unit classes created by define-unit-class. Effective-link-definition is a subclass of
gbbopen-effective-slot-definition.

See also

direct-link-definition (page 379)
effective-nonlink-slot-definition (page 347)
gbbopen-effective-slot-definition (page 349)

GBBopen 1.5 Reference
380 5.1 Links

link-instance-of object = instance [Generic Accessor]

Purpose
Return the unit instance in an object that can be used as a link pointer.

Seftf syntax
(setf (link-instance-of object) unit-instance) = unit-instance

Method signatures
link-instance-of (object deleted/non-deleted-unit-instance) = object

link-instance-of (object standard-link-pointer) = unit-instance
Package :gbbopen
Module :gbbopen-core

Arguments
object An object
unit-instance A unit instance

Returns
The link pointer unit-instance.

Description

The link-instance-of method on a unit instance returns its argument unit-instance object.
See also

linkf (page 382)

link-setf (page 384)

standard-link-pointer (page 388)

unlinkf (page 389)

Example

Define a link-pointer object class that can be used to associate a value with a link pointer:

(define-class link-ptr-with-value (standard-link-pointer)
((value :initform nil)))

and an informative print-instance-slots method:

(defmethod print-instance-slots ((obj link-ptr-with-value) stream)
(call-next-method)
(print-instance-slot-value obj ’'value stream))

GBBopen 1.5 Reference
5.1 Links 381

linkf link-slot-place unit-instance-or-instances = unit-instance-or-instances [Macro]

Purpose
Add a link between a unit instance and one or more unit instances.

Package :gbbopen
Module :gbbopen-core

Arguments
link-slot-place A form which is suitable for use as a generalized reference to a link slot

unit-instance-or-instances A unit instance, a link-pointer object, or a list of unit instances and
link-pointer objects

Returns
The supplied unit-instance-or-instances.

Events
A link-event is signaled for:
e all pointers that are added to the specified link-slot-place
e each inverse pointer of the link that is added to another unit instance

Description
Adding a link from a unit instance to another unit instance that is already linked to that same unit
instance is ignored.

See also

link-instance-of (page 381)
link-setf (page 384)
standard-link-pointer (page 388)
unlinkf (page 389)
unlinkf-all (page 390)
Examples

Add support-hyp to the supporting—hyps link slot of the hyp unit instance unit-instance:

> (linkf (supporting-hyps-of unit-instance) support-hyp)
#<hyp 231 (1488 7405) 0.63 [0..8]>
>

Note that, when a link pointer to hyp 231 is already present in a link slot, adding a link to that same
hyp unit instance—even as a link-pointer object—has no effect on the existing link pointer:

> (supporting-hyps—-of unit-instance)
(#<hyp 231 (1488 7405) 0.63 [0..8]>)
> (linkf (supporting-hyps-of unit-instance)
(make-instance ’link-ptr-with-value
:link-instance support-hyp

GBBopen 1.5 Reference
382 5.1 Links

linkf

:value 0.9))
#<link-ptr-with-value #<hyp 231 (1488 7405) 0.63 [0..8]>
> (supporting-hyps-of unit-instance)
(#<hyp 231 (1488 7405) 0.63 [0..8]>)
>

This time, add a link-pointer object as a new pointer:

> (unlinkf-all (supporting-hyps-of unit-instance))
nil
> (linkf (supporting-hyps-of unit-instance)
(make-instance ’link-ptr-with-value

:link-instance support-hyp

:value 0.9))
#<link-ptr-with-value #<hyp 231 (1488 7405) 0.63 [0..8]>
> (supporting-hyps-of unit-instance)
(#<link-ptr-with-value #<hyp 231 (1488 7405) 0.63 [0..8]>)
>

linkf

GBBopen 1.5 Reference
5.1 Links 383

link-setf link-slot-place unit-instance-or-instances = unit-instance-or-instances [Macro]

Purpose
Set link-slot-place to be precisely unit-instance-or-instances links between unit instance and
unit-instance-or-instances.

Package :gbbopen
Module :gbbopen-core

Arguments
link-slot-place A form which is suitable for use as a generalized reference to a link slot

unit-instance-or-instances A unit instance, a link-pointer object, or a list of unit instances and
link-pointer objects

Returns
The supplied unit-instance-or-instances.

Events
An unlink-event is signaled for:

e all pointers that are removed from the specified link-slot-place

e each inverse pointer of the link that is removed-from another unit instance
A link-event is signaled for:

¢ all pointers that are added to the specified link-slot-place (unlike linkf, this event is signaled
even if no new pointers were added to link-slot-place)

e each inverse pointer of the link that is added to another unit instance

Description

Any existing links in link-slot-place that do not involve unit-instance-or-instances are unlinked.
Existing links that are also specified as link-pointer objects in unit-instance-or-instances are replaced
with the new link-pointer objects. Then links to any additional unit instances in
unit-instance-or-instances are added.

The order of the specified unit-instance-or-instances is maintained when settting the value of
link-slot-place, if no : sort-function was specified as a link-slot-option in the unit-class definition
for that link slot. Any duplicates in unit-instance-or-instances are removed, but the order of the
remaining elements will be the same as the order in which they appeared in
unit-instance-or-instances.

See also

link-instance-of (page 381)
linkf (page 382)
standard-link-pointer (page 388)
unlinkf (page 389)
unlinkf-all (page 390)

GBBopen 1.5 Reference
384 5.1 Links

link-setf

Examples
Set the supporting-hyps link slot of the hyp unit instance to the unit instances in
supporting-hyps:

> (link-setf (supporting-hyps-of unit-instance) supporting-hyps)
#<hyp 231 (1488 7405) 0.63 [0..8]>
>

Note that, when a link pointer to hyp 231 is already present in a link slot, adding a

link-pointer-object link to that same hyp unit instance replaces the existing link pointer:

> (supporting-hyps-of unit-instance)
(#<hyp 231 (1488 7405) 0.63 [0..8]>)
> (link-setf (supporting-hyps-of unit-instance)
(make—-instance ’link-ptr-with-value
:link-instance support-hyp
:value 0.9))
#<link-ptr-with-value #<hyp 231 (1488 7405) 0.63 [0..8]>
> (supporting-hyps-of unit-instance)
(#<link-ptr-with-value #<hyp 231 (1488 7405) 0.63 [0..8]>)
> (value-of x)
0.9
>

Replace the existing link-pointer-object pointer with one that has a different value:

> (supporting-hyps-of unit-instance)
(#<link-ptr-with-value #<hyp 231 (1488 7405) 0.63 [0..8]>)
> (link-setf (supporting-hyps-of unit-instance)
(make-instance ’link-ptr-with-value
:link-instance support-hyp
:value 0.94))
#<link-ptr-with-value #<hyp 231 (1488 7405) 0.63 [0..8]>
> (supporting-hyps-of unit-instance)
(#<link-ptr-with-value #<hyp 231 (1488 7405) 0.63 [0..8]>)
> (value—-of x)
0.94
>

Of course, a value change can also be done directly in an existing link-pointer object:

> (supporting-hyps-of unit-instance)
(#<link-ptr-with-value #<hyp 231 (1488 7405) 0.63 [0..8]>)
> (setf (value-of %) 0.96)

0.96

> (supporting-hyps—-of unit-instance)
(#<link-ptr-with-value #<hyp 231 (1488 7405) 0.63 [0..8]>)
> (value—-of «)

0.96

>

GBBopen 1.5 Reference
5.1 Links

385

link-setf

Note

The form (1ink-setf link-slot-place nil) is semantically equivalent to
(unlinkf-all link-slot-place). However, using unlinkf-all is preferable stylistically and slightly
faster.

link-setf

GBBopen 1.5 Reference
386 5.1 Links

link-slot-p slot = slot-or-nil [Generic Function]

Purpose
Determine if a slot meta-object is a link slot.

Method signatures
link-slot-p (slot direct-link-definition) = slot

link-slot-p (slot effective—-link-definition) = slot
link-slot-p (slot slot—-definition) = nil

Package :gbbopen
Module :gbbopen-core

Arguments
slot A slot meta object
slot-or-nil A slot meta object or nil

Returns
The slot if it is a link slot; nil otherwise.

See also
define-unit-class (page 330)

Example
Return the names of the link slots of the hyp unit class:

> (loop for slot in (class-slots (find-class ’'hyp))

if (link-slot-p slot) collect (slot-definition-name slot))
(supporting-hyps supported-hyps)
>

GBBopen 1.5 Reference
5.1 Links 387

standard-link-pointer [Class]

Package :gbbopen
Module :gbbopen-core

Description

The class standard-link-pointer is a subclass of standard-gbbopen-instance with one direct slot,
link-instance, and the slot accessor, link-instance-of. Standard-link-pointer is a useful
superclass for defining objects that can be used as a link pointer.

See also

linkf (page 382)
link-setf (page 384)
link-instance-of (page 381)
standard-gbbopen-instance (page 126)
unlinkf (page 389)
Example

Define a link-pointer object class that can be used to associate a value with a link pointer:

(define-class link-ptr-with-value (standard-link-pointer)
((value :initform nil)))

and an informative print-instance-slots method:

(defmethod print-instance-slots ((obj link-ptr-with-value) stream)
(call-next-method)
(print-instance-slot-value obj ’value stream))

GBBopen 1.5 Reference
388 5.1 Links

unlinkf link-slot-place unit-instance-or-instances = unit-instance-or-instances [Macro]

Purpose
Remove a link between a unit instance and one or more unit instances.

Package :gbbopen
Module :gbbopen-core

Arguments
link-slot-place A form which is suitable for use as a generalized reference to a link slot

unit-instance-or-instances A unit instance, a link-pointer object, or a list of unit instances and
link-pointer objects

Returns
The supplied unit-instance-or-instances.

Events
An unlink-event is signaled for:

e all pointers that are removed from the specified link-slot-place
e each inverse pointer of the link that is removed from another unit instance

See also

link-instance-of (page 381)
linkf (page 382)
link-setf (page 384)
standard-link-pointer (page 388)
unlinkf-all (page 390)
Examples

Remove support-hyp from the supporting—hyps link slot of the hyp unit instance
unit-instance:

> (unlinkf (supporting-hyps-of unit-instance) support-hyp)

#<hyp 231 (1488 7405) 0.63 [0..8]>

>

The above, but this time showing that the support—-hyp can be a link-pointer object:
> (linkf (supporting-hyps-of unit-instance) support-hyp)
#<hyp 231 (1488 7405) 0.63 [0..8]>
> (unlinkf (supporting-hyps-of unit-instance)
(make—-instance ’link-ptr-with-value
:link-instance support-hyp))
#<link-ptr-with-value #<hyp 231 (1488 7405) 0.63 [0..8]>
> (supporting-hyps-of unit-instance)
nil
>

GBBopen 1.5 Reference
5.1 Links 389

unlinkf-all link-slot-place [Macro]

Purpose
Remove all the links in the specified link slot.

Package :gbbopen
Module :gbbopen-core

Arguments
link-slot-place A form which is suitable for use as a generalized reference to a link slot

Events
An unlink-event is signaled for:
e all pointers that are removed from the specified link-slot-place
e each inverse pointer of the link that is removed from another unit instance

See also

linkf (page 382)
link-setf (page 384)
unlinkf (page 389)

Example
Remove all supporting hypothesis links from the supporting-hyps link slot of the hyp unit instance
unit-instance:

> (unlinkf-all (supporting-hyps-of unit-instance))

nil

>

GBBopen 1.5 Reference
390 5.1 Links

5.2 Events

This section contains : gbbopen—-core entities that pertain to events, event functions, event printing,
and event signaling.

Here are the event subclasses of standard-event-instance that are defined in the : gbbopen-core
module:

multiple-instance-event

change-instance-class-event

delete-instance-event

instance-created/changed/deleted-event instance-changed-class-event

instance-event

instance-created-event

instance-deleted-event

ink-slot-event link-event

single-instance-event link/nonlink-slot-event

link/nonlink-slot-modified-event &= unlink-event

standard-event-instance

nonlink-slot-updated-event

instance-added-to-space-instance-event

space-instance-event

instance-moved-within-space-instance-event

instance-removed-from-space-instance-event

non-instance-event

timer-interrupt-event

The event classes shown within rectangles are abstract classes that cannot be signaled.

Here are the defined event subclasses when both the : gbbopen-core and : agenda—-shell modules
have been loaded:

multiple-instance-event

change-instance-class-event

delete-instance-event

instance-created/changed/deleted-event instance-changed-class-event

instance-created-event

instance-deleted-event

link-event

ink-slot-event

link/nonlink-slot-event

single-instance-event

instance-event

link/nonlink-slot-modified-event K= unlink-event

nonlink-slot-updated-event
instance-added-to-space-instance-event

space-instance-event

instance-moved-within-space-instance-event

instance-removed-from-space-instance-event

ksa-activated-event

ksa-executing-event
ksa-event

standard-event-instance

ksa-obviated-event
ksa-retriggered-event
control-shell-cycle-event

control-shell-awakened-event

control-shell-hibernating/awakened-event <

control-shell-event control-shell-hibernating-event

control-shell-restarted-event

non-instance-event

control-shell-started-event

quiescence-event

timer-interrupt-event

The additional control-shell-event classes are defined and signaled by the Agenda Shell. Again
classes shown within rectangles are abstract classes that cannot be signaled.

GBBopen 1.5 Reference
5.2 Events 391

add-event-function function [event-class-specifier [unit-class-or-instance-specifier]] [Function]
skey slot-names paths permanent priority

Purpose
Add an event function for one or more event classes.

Package :gbbopen

Module :gbbopen-core

Arguments

function A function designator

event-class-specifier An extended event-class specification (see below; default is t)

unit-class-or-instance-specifier An extended unit-class or instance specification (see below; default is
t)

slot-names or slot-name A slot-name or list of slot-names (default is t)

paths or path A space-instance path regular expression (default is (*))

permanent A generalized boolean (default is nil)

priority An integer between -127 and 127, inclusive (default is 0)

Detailed syntax

event-class-specifier ::= atomic-event-class | (atomic-event-class subeventing-specifier) | t
atomic-event-class ::= event-class | event-class-name

subeventing-specifier ::= :plus-subevents | :no-subevents + | =

The shorthand + subevents specifier is equivalent to :plus-subevents and = to :no-subevents.

unit-class-or-instance-specifier ::= unit-instance | (unit-instance™) |
atomic-unit-class |
(atomic-unit-class subclassing-specifier) | t
atomic-unit-class ::= unit-class | unit-class-name
subclassing-specifier ::= :plus-subclasses | :no-subclasses |+ | =

The shorthand + subclasses specifier is equivalent to :plus—-subclasses and =to :no-subclasses.

Description

The specified function must accept the arguments associated with every event class to which it is
added. In addition, function should accept additional arguments that are associated with all
subevents of the specified event classes. (This can be achieved by specifying sallow-other-keys in
the lambda list of function.)

The paths argument is either the symbol t (indicating all space instances) or a list representing a
regular expression where the following reserved symbols are interpreted as follows:

matches one occurrence in a space-instance path

matches zero or one occurrence in a space-instance path

matches one or more occurrences in a space-instance path

matches zero or more occurrences in a space-instance path

move to parent

> ok 4+ el

GBBopen 1.5 Reference
392 5.2 Events

add-event-function

See also

remove-event-function (page 405)
remove-all-event-functions (page 403)

Examples

Add the event function evfn-printv to the set of functions to be invoked when
instance—-created-event is signaled on a hyp unit instance:

(add-event-function ’'evin-printv ’instance-created-event ’hyp)

Add the event function evfn-printv to the set of functions to be invoked when
instance-created-event is signaled on a hyp unit instance or its subclasses:

(add-event—-function ’'evifn-printv ’instance-created-event ’ (hyp
:plus—-subclasses))

or simply:

(add-event—-function ’'evin-printv ’instance-created-event ’ (hyp +))

Note
Unit-instance-specific event functions are not yet implemented in GBBopen.

add-event-function

GBBopen 1.5 Reference
5.2 Events 393

define-event-class event-class-name ({superclass-name}”) ({slot-specifier}*) [Macrol]

Purpose

{class-option}™ = new-event-class

Define or redefine an event class.

Packqge :gbbopen

Module :gbbopen-core

Arguments

event-class-name A non-nil, non-keyword symbol that names the event class

superclass-name A non-nil, non-keyword symbol that specifies a direct superclass of the event class

slot-specifiers
class-options
new-event-class

Returns

event-class-name
See below
See below

A new or modified event class object.

The newly defined or modified event class object.

Detailed syntax
slot-specifier ::= slot-name | (slot-name [[slot-option]])

slot-option ::= {:accessor reader-function-name}™ |
{:allocation allocation-type} |
:documentation string} |
:initarg initarg-name}™ |
:initform form} |

:type type-specifier} |

{
{
{
{: reader reader-function-name}”™ |
{
{

:writer writer-function-name}

class-option ::=

(
(
(
(
(
(
(
(
(
(
(
(
(
(

:abstract boolean) |

:default-initargs . initarg-list) |
:documentation string) |

:event-metaclass event-metaclass-specifier) |
:event-printing event-printing-specifier/code) |
:export-accessors boolean) |
:export-class—name boolean) |
:export-slot-names direct-slots-specifier) |
:generate-accessors direct-slots-specifier) |
:generate-accessors-format {:prefix | :suffix} |
:generate-accessors-prefix {string | symbol}) |
:generate-accessors—-suffix {string | symbol}) |
:generate-initargs direct-slots-specifier) |
:metaclass class-name)

event-metaclass-specifier ::= non-instance-event-class | instance-event-class |

394

space-instance-event-class |
nonlink-slot-event-class | link-slot-event-class

GBBopen 1.5 Reference
5.2 Events

define-event-class

direct-slots-specifier ::= nil | t | included-slot-name™ |
{t :exclude excluded-slot-name”™}

Terms

class-name A non-nil, non-keyword symbol that names a class
documentation A documentation string

initarg-list An initialization argument list

slot-name A non-nil, non-keyword symbol

Description

Each superclass-name argument specifies a direct superclass of the new class. If the superclass list is
empty, then the direct superclass defaults to the single class standard-event-instance.

The :metaclass class-name class option, if specified, must be a subclass of standard-event-class.
The default metaclass value is the metaclass of the event superclasses of event-class-name if they all
have the smae metaclass. If the event superclasses have multiple metaclasses, the metaclass of
event-class-name must be provided. The following table lists the compatible event-superclass
metaclasses for each event metaclass:

Compatible Event-Superclass Metaclasses

Event non-— space— nonlink— link-
Metaclass instance instance instance slot slot
non-instance-event-class X
instance-event-class X X
space-instance—-event—-class X X X
nonlink-slot-event-class X X X
link-slot—-event—-class X X X

The table in the documentation for signal-event lists the initialization arguments that are required
when signaling an event. These required initialization arguments are based on the event metaclass of
the event class of the event that is being signaled.

See also

signal-event (page 409)
standard-event-class (page 410)
standard-event-instance (page 411)

with-generate-accessors-format (page 136)

Example

> (define-event-class my-event (non-instance-event)
((my-event—-argl :initform nil)
(my-event—-arg2 :initform nil)))
#<non-instance-event-class my-event>
>

define-event-class

GBBopen 1.5 Reference
5.2 Events 395

describe-event-printing [event-class-specifier [unit-class-or-instance-specifier]] [Function]
&key slot-names paths

Purpose
Describe the printing of events for one or more event classes.

Package :gbbopen

Module :gbbopen-core

Arguments

event-class-specifier An extended event-class specification (see below; default is t)

unit-class-or-instance-specifier An extended unit-class or instance specification (see below; default is
t)

slot-names or slot-name A slot-name or list of slot-names (default is t)

paths or path A space-instance path regular expression (default is (*))

Detailed syntax

event-class-specifier ::= atomic-event-class | (atomic-event-class subeventing-specifier) | t
atomic-event-class ::= event-class | event-class-name

subeventing-specifier ::= :plus-subevents | :no-subevents + | =

The shorthand + subevents specifier is equivalent to : plus-subevents and = to :no—subevents.

unit-class-or-instance-specifier ::= unit-instance | (unit-instance™) |
atomic-unit-class |
(atomic-unit-class subclassing-specifier) | t
atomic-unit-class ::= unit-class | unit-class-name
subclassing-specifier ::= :plus-subclasses | :no-subclasses |+ | =

The shorthand + subclasses specifier is equivalent to : plus—-subclasses and =to :no-subclasses.

Description

The paths argument is either the symbol t (indicating all space instances) or a list representing a
regular expression where the following reserved symbols are interpreted as follows:

matches one occurrence in a space-instance path

matches zero or one occurrence in a space-instance path

matches one or more occurrences in a space-instance path The description is printed to the
matches zero or more occurrences in a space-instance path

move to parent

*standard-output® stream.

> ok 4 el

See also

disable-event-printing (page 398)
enable-event-printing (page 400)
resume-event-printing (page 407)

suspend-event-printing (page 412)

GBBopen 1.5 Reference
396 5.2 Events

describe-event-printing

Example
Describe all event printing:

> (describe-event-printing ’instance-event)
instance-event

standard-unit-instance

uc-2 [suspended]

uc-1 [suspended]

ksa

ks

standard-space—-instance

Note
Unit-instance-specific event functions are not yet implemented in GBBopen.

describe-event-printing

GBBopen 1.5 Reference
5.2 Events 397

disable-event-printing [event-class-specifier [unit-class-or-instance-specifier]] [Function]
skey slot-names paths

Purpose
Disable the printing of events for one or more event classes.

Package :gbbopen

Module :gbbopen-core

Arguments

event-class-specifier An extended event-class specification (see below; default is t)

unit-class-or-instance-specifier An extended unit-class or instance specification (see below; default is
t)

slot-names or slot-name A slot-name or list of slot-names (default is t)

paths or path A space-instance path regular expression (default is ())

Detailed syntax

event-class-specifier ::= atomic-event-class | (atomic-event-class subeventing-specifier) | t
atomic-event-class ::= event-class | event-class-name

subeventing-specifier ::= :plus-subevents | :no-subevents + | =

The shorthand + subevents specifier is equivalent to : plus-subevents and = to :no—-subevents.

unit-class-or-instance-specifier ::= unit-instance | (unit-instance™) |
atomic-unit-class |
(atomic-unit-class subclassing-specifier) | t
atomic-unit-class ::= unit-class | unit-class-name
subclassing-specifier ::= :plus-subclasses | :no-subclasses |+ | =

The shorthand + subclasses specifier is equivalent to : plus—-subclasses and =to :no-subclasses.

Description

The paths argument is either the symbol t (indicating all space instances) or a list representing a
regular expression where the following reserved symbols are interpreted as follows:

matches one occurrence in a space-instance path

matches zero or one occurrence in a space-instance path

matches one or more occurrences in a space-instance path

matches zero or more occurrences in a space-instance path

move to parent

> ok 4+ el

See also

describe-event-printing (page 396)
enable-event-printing (page 400)
resume-event-printing (page 407)
suspend-event-printing (page 412)

Example
Disable all event printing:

(disable-event-printing)

GBBopen 1.5 Reference
398 5.2 Events

disable-event-printing

Note
Unit-instance-specific event functions are not yet implemented in GBBopen.

disable-event-printing

GBBopen 1.5 Reference
5.2 Events 399

enable-event-printing [event-class-specifier [unit-class-or-instance-specifier]] [Function]
skey slot-names paths

Purpose
Enable the printing of events for one or more event classes.

Package :gbbopen

Module :gbbopen-core

Arguments

event-class-specifier An extended event-class specification (see below; default is t)

unit-class-or-instance-specifier An extended unit-class or instance specification (see below; default is
t)

slot-names or slot-name A slot-name or list of slot-names (default is t)

paths or path A space-instance path regular expression (default is (*))

Detailed syntax

event-class-specifier ::= atomic-event-class | (atomic-event-class subeventing-specifier) | t
atomic-event-class ::= event-class | event-class-name
subeventing-specifier ::= :plus-subevents | :no-subevents + | =

The shorthand + subevents specifier is equivalent to :plus-subevents and = to :no-subevents.

unit-class-or-instance-specifier ::= unit-instance | (unit-instance™) |
atomic-unit-class |
(atomic-unit-class subclassing-specifier) | t
atomic-unit-class ::= unit-class | unit-class-name
subclassing-specifier ::= :plus-subclasses | :no-subclasses |+ | =

The shorthand + subclasses specifier is equivalent to :plus—subclasses and =to :no—-subclasses.

Description

The paths argument is either the symbol t (indicating all space instances) or a list representing a
regular expression where the following reserved symbols are interpreted as follows:

matches one occurrence in a space-instance path

matches zero or one occurrence in a space-instance path

matches one or more occurrences in a space-instance path

matches zero or more occurrences in a space-instance path

move to parent

> ok 4+ el

See also

describe-event-printing (page 396)
disable-event-printing (page 398)
resume-event-printing (page 407)

suspend-event-printing (page 412)

GBBopen 1.5 Reference
400 5.2 Events

enable-event-printing

Example
Enable event printing on all space-instance events of hyp unit instances:

(enable-event-printing ’ (space-instance-event :plus-subevents)
" (hyp :plus-subclasses))

or simply:

(enable-event-printing ’ (space-instance-event +) ' (hyp +))

Note
Unit-instance-specific event functions are not yet implemented in GBBopen.

enable-event-printing

GBBopen 1.5 Reference
5.2 Events 401

evfn-printv event-class &rest args [Function]

Purpose
Assist debugging by printing forms and the results of evaluating them to xt race—output *.

Package :gbbopen
Module :gbbopen-core

Arguments
forms An implicit progn of forms to be evaluated and printed

Returns
The values returned by evaluating the last form.

Description

Evaluates forms, printing the form and the result values of each evaluation to xtrace-output*.
Anyform that is a string (before evaluation) is simply printed without enclosing double-quote
characters.

Examples

Add the event function evfn-printv to the set of functions to be invoked when
instance-created-event is signaled on a hyp unit instance:

(add-event—-function ’'evfn-printv ’instance-created-event ’'hyp)

GBBopen 1.5 Reference
402 5.2 Events

remove-all-event-functions [event-class-specifier [unit-class-or-instance-specifier]] [Function]
skey slot-names paths permanent

Purpose
Remove all event functions for one or more event classes.

Packqge :gbbopen

Module :gbbopen-core

Arguments

event-class-specifier An extended event-class specification (see below; default is t)

unit-class-or-instance-specifier An extended unit-class or instance specification (see below; default is
t)

slot-names or slot-name A slot-name or list of slot-names (default is t)

paths or path A space-instance path regular expression (default is (*))

permanent A generalized boolean (default is nil)

Detailed syntax

event-class-specifier ::= atomic-event-class | (atomic-event-class subeventing-specifier) | t
atomic-event-class ::= event-class | event-class-name
subeventing-specifier ::= :plus-subevents | :no-subevents + | =

The shorthand + subevents specifier is equivalent to : plus-subevents and = to :no-subevents.

unit-class-or-instance-specifier ::= unit-instance | (unit-instance™) |
atomic-unit-class |
(atomic-unit-class subclassing-specifier) | t
atomic-unit-class ::= unit-class | unit-class-name
subclassing-specifier ::= :plus-subclasses | :no-subclasses |+ | =

The shorthand + subclasses specifier is equivalent to :plus—subclasses and =to :no—-subclasses.

See also

add-event-function (page 392)
remove-event-function (page 405)

Examples
Remove all event functions associated with a instance-created-event on a hyp unit instance:

(remove-all-event-functions ’'instance-created-event ’hyp)

Remove all event functions associated with a instance-created-event on a hyp unit instance or
its subclasses:

(remove—-all-event—functions ’instance-created-event ’ (hyp :plus-subclasses))
or simply:

(remove—-all-event—-functions ’instance-created-event ’ (hyp +))

GBBopen 1.5 Reference
5.2 Events 403

remove-all-event-functions

Note
Unit-instance-specific event functions are not yet implemented in GBBopen.

remove-all-event-functions

GBBopen 1.5 Reference
404 5.2 Events

remove-event-function function [event-class-specifier [unit-class-or-instance-specifier]] [Function]
skey slot-names paths permanent

Purpose
Remove an event function for one or more event classes.

Package :gbbopen
Module :gbbopen-core

Arguments

function A function designator

event-class-specifier An extended event-class specification (see below; default is t)

unit-class-or-instance-specifier An extended unit-class or instance specification (see below; default is
t)

slot-names or slot-name A slot-name or list of slot-names (default is t)

paths or path A space-instance path regular expression (default is (*))

permanent A generalized boolean (default is nil)

Detailed syntax

event-class-specifier ::= atomic-event-class | (atomic-event-class subeventing-specifier) | t
atomic-event-class ::= event-class | event-class-name
subeventing-specifier ::= :plus-subevents | :no-subevents + | =

The shorthand + subevents specifier is equivalent to :plus-subevents and = to :no—-subevents.

unit-class-or-instance-specifier ::= unit-instance | (unit-instance™) |
atomic-unit-class |
(atomic-unit-class subclassing-specifier) | t
atomic-unit-class ::= unit-class | unit-class-name
subclassing-specifier ::= :plus-subclasses | :no-subclasses |+ | =

The shorthand + subclasses specifier is equivalent to :plus—subclasses and =to :no—-subclasses.

See also

add-event-function (page 392)
remove-all-event-functions (page 403)

Examples

Remove the event function evfn-printv from the set of functions to be invoked when
instance-created-event is signaled on a hyp unit instance:

(remove—event—-function ’‘evifn-printv ’instance-created-event ’hyp)

Remove the event function evfn-printv from the set of functions to be invoked when
instance—created-event is signaled on a hyp unit instance or its subclasses:

(remove-event—-function ’'evfn-printv ’instance-created-event ’ (hyp
:plus-subclasses))

or simply:

(remove—-event—-function ’'evfn-printv ’instance-created-event ’ (hyp +))

GBBopen 1.5 Reference
5.2 Events 405

remove-event-function

Note
Unit-instance-specific event functions are not yet implemented in GBBopen.

remove-event-function

GBBopen 1.5 Reference
406 5.2 Events

resume-event-printing [event-class-specifier [unit-class-or-instance-specifier]] [Function]
s&key slot-names paths

Purpose
Resume the printing of printing-enabled events for one or more event classes.

Package :gbbopen

Module :gbbopen-core

Arguments

event-class-specifier An extended event-class specification (see below; default is t)

unit-class-or-instance-specifier An extended unit-class or instance specification (see below; default is
t)

slot-names or slot-name A slot-name or list of slot-names (default is t)

paths or path A space-instance path regular expression (default is ())

Detailed syntax

event-class-specifier ::= atomic-event-class | (atomic-event-class subeventing-specifier) | t
atomic-event-class ::= event-class | event-class-name
subeventing-specifier ::= :plus-subevents | :no-subevents + | =

The shorthand + subevents specifier is equivalent to : plus-subevents and = to :no—-subevents.

unit-class-or-instance-specifier ::= unit-instance | (unit-instance™) |
atomic-unit-class |
(atomic-unit-class subclassing-specifier) | t
atomic-unit-class ::= unit-class | unit-class-name
subclassing-specifier ::= :plus-subclasses | :no-subclasses |+ | =

The shorthand + subclasses specifier is equivalent to : plus—-subclasses and =to :no-subclasses.

Description

The paths argument is either the symbol t (indicating all space instances) or a list representing a
regular expression where the following reserved symbols are interpreted as follows:

matches one occurrence in a space-instance path

matches zero or one occurrence in a space-instance path

matches one or more occurrences in a space-instance path

matches zero or more occurrences in a space-instance path

move to parent

> ok 4+ el

See also

describe-event-printing (page 396)
disable-event-printing (page 398)
enable-event-printing (page 400)
suspend-event-printing (page 412)

Example
Resume all suspended event printing:

(resume-event-printing)

GBBopen 1.5 Reference
5.2 Events 407

resume-event-printing

Note
Resuming event printing does not enable event printing that is disabled.

Unit-instance-specific event functions are not yet implemented in GBBopen.

resume-event-printing

GBBopen 1.5 Reference
408 5.2 Events

signal-event event-class srest initargs [Function]

Purpose
Signal an event.

Package :gbbopen
Module :gbbopen-core

Arguments

event-class An event class or a non-nil, non-keyword symbol that names an event class

initargs An initialization argument list

Description

The following table lists the initialization arguments that are required for specific event metaclasses:

Event metaclass
non-instance-event-class
instance-event-class
space—-instance-event-class

nonlink-slot—-event-class

link-slot—-event-class

See also

define-event-class (page 394)
with-events-disabled (page 414)
with-events-enabled (page 415)

Example

Required initargs

None

:instance unit-instance

:instance unit-instance
:space—-instance space-instance
:instance unit-instance

:slot effective-nonlink-slot-definition
:instance unit-instance

:slot effective-link-definition

(signal-event ’'my-event :my-event-argl 3)

GBBopen 1.5 Reference
5.2 Events

409

standard-event-class [Class]

Package :gbbopen
Module :gbbopen-core

Description

The class standard-event-class is the superclass of classes defined by define-event-class. It is a
subclass of standard-class.

See also

define-event-class (page 394)
standard-event-instance (page 411)

GBBopen 1.5 Reference
410 5.2 Events

standard-event-instance [Event Class]

Package :gbbopen
Module :gbbopen-core

Description

The class standard-event-instance is an instance of standard-event-class and is a superclass of
every event class that is an instance of standard-event-class except itself. It is a subclass of
standard-gbbopen-instance.

See also

print-instance-slots (page 107)
standard-gbbopen-instance (page 126)
standard-event-class (page 410)

GBBopen 1.5 Reference
5.2 Events 411

suspend-event-printing [event-class-specifier [unit-class-or-instance-specifier]] [Function]
skey slot-names paths

Purpose
Suspend the printing of printing-enabled events for one or more event classes.

Package :gbbopen

Module :gbbopen-core

Arguments

event-class-specifier An extended event-class specification (see below; default is t)

unit-class-or-instance-specifier An extended unit-class or instance specification (see below; default is
t)

slot-names or slot-name A slot-name or list of slot-names (default is t)

paths or path A space-instance path regular expression (default is ())

Detailed syntax

event-class-specifier ::= atomic-event-class | (atomic-event-class subeventing-specifier) | t
atomic-event-class ::= event-class | event-class-name

subeventing-specifier ::= :plus-subevents | :no-subevents + | =

The shorthand + subevents specifier is equivalent to : plus—-subevents and = to :no—subevents.

unit-class-or-instance-specifier ::= unit-instance | (unit-instance™) |
atomic-unit-class |
(atomic-unit-class subclassing-specifier) | t
atomic-unit-class ::= unit-class | unit-class-name
subclassing-specifier ::= :plus—-subclasses | :no-subclasses |+ | =

The shorthand + subclasses specifier is equivalent to : plus—subclasses and =to :no—-subclasses.

Description

Suspending event printing is a convenient way of switching off event printing without losing
event-printing enabled/disabled settings. Disabled event printing remains disabled if event printing
is resumed (by using resume-event-printing).

The paths argument is either the symbol t (indicating all space instances) or a list representing a
regular expression where the following reserved symbols are interpreted as follows:

= matches one occurrence in a space-instance path

matches zero or one occurrence in a space-instance path

matches one or more occurrences in a space-instance path

matches zero or more occurrences in a space-instance path

move to parent

> ook 4 w0 |

See also

describe-event-printing (page 396)
disable-event-printing (page 398)
enable-event-printing (page 400)
resume-event-printing (page 407)

GBBopen 1.5 Reference
412 5.2 Events

suspend-event-printing

Example
Suspend all event printing associated with possible-hyp unit instances:

(suspend-event-printing 't ’'possible-hyp)

Note
Unit-instance-specific event functions are not yet implemented in GBBopen.

suspend-event-printing

GBBopen 1.5 Reference
5.2 Events 413

with-events-disabled (option™) declaration™ form™ = result™

Purpose
Disable event signaling during evaluation of forms.

Package :gbbopen
Module :gbbopen-core

Arguments

option No options are currently supported

declaration A declare expression (not evaluated)

forms An implicit progn of forms to be evaluated
results The values returned by evaluating the last form

Returns

The values returned by evaluating the last form.
See also

signal-event (page 409)

with-events-enabled (page 415)

Example
Create a hyp without signaling any events:

> (with—-events—-disabled ()
(make—-instance ’hyp
:location (list x y)
:classification ' (:car :truck)
:color ' :red
:belief .85
:velocity-range ' (5 35)
:supporting-hyps supporting-hyps))
#<hyp 419 (1835 4791) 0.85 [5..35]>
>

414

[Macro]

GBBopen 1.5 Reference
5.2 Events

with-events-enabled (option™) declaration™ form™ = result®

Purpose
Restore event signaling during evaluation of forms.

Package :gbbopen
Module :gbbopen-core

Arguments

option No options are currently supported

declaration A declare expression (not evaluated)

forms An implicit progn of forms to be evaluated
results The values returned by evaluating the last form

Returns

The values returned by evaluating the last form.
See also

signal-event (page 409)

with-events-disabled (page 414)

Example

[Macro]

Create a hyp without signaling any events, then add supporting-hypothesis links with events enabled:

> (with—-events—-disabled
(let ((hyp (make—-instance ’'hyp
:location (list x y)

:classification ' (:car :truck)

:color ' :red

:belief .85

:velocity-range ' (5 35))))
(with-events-enabled ()

(linkf (supporting-hyps-of hyp) supporting-hyps))

hyp))
#<hyp 419 (1835 4791) 0.85 [5..35]>
>

GBBopen 1.5 Reference
5.2 Events

415

5.3 Intervals

This section contains : gbbopen—-core entities that pertain to intervals. An interval [q, D] is the set of
real numbers between the start value of the interval, a, and the end value, b, inclusive. The interval
[z, x] represents the single point x.

An interval is represented as either a cons, a two-element list, or a two-element array containing the
start and end values of the interval. So, a representation for the interval [0, 100] can be created as any
of the following:

e (cons 0 100)
e (list 0 100)
e (vector 0 100)

The function make-interval is provided for stylistic clarity in creating an interval.
Intervals also include the unbounded intervals:

e (—00,00) (provided as the constant infinite-interval)
e (—oo,z] (for example, (make-interval x infinity))
e [z,00) (for example, (make-interval -infinity x))

It is an error for the start value of an interval to be greater than the end value.

GBBopen 1.5 Reference
416 5.3 Intervals

*coerce-contracted-interval-rationals-to-floats™ [Variable]

Purpose

Control automatic coercion of non-integer rationals to floats when an interval is contracted into a
non-integral point range by expand-interval and nexpand-interval.

Packqge :gbbopen

Module :gbbopen-core
Value type A generalized boolean
Initial value ni1

See also

expand-interval (page 419)
nexpand-interval (page 426)

Examples

> (let ((xcoerce-contracted-interval-rationals-to-floatsx ’"t))
(expand-interval " (2 . 5) =-3))

(3.5 . 3.5)

> (let ((xcoerce-contracted-interval-rationals-to—-floats* nil))
(expand-interval " (2 . 5) -3))

(7/2 . 7/2)

>

GBBopen 1.5 Reference
5.3 Intervals 417

copy-interval interval = new-interval

Purpose

Create a new interval by copying interval.

Package :gbbopen

Module :gbbopen-core

Arguments
interval An interval
new-interval An interval

Returns
The new interval.

Description

[Function]

The structure of the original interval (cons, two-element list, or two-element array) is maintained in

the newly allocated new-interval.

See also

expand-interval (page
infinite-interval (page
interval-start (page
interval-end (page
make-interval (page

nexpand-interval (page 426)

nshift-interval (page
shift-interval (page

Examples

> (copy—-interval ' (2 5))

(2 5)
(copy—-interval '
2 . 5)

(2 5)

418

419)
421)
423)
422)
425)

427)
428)

(2

>
(
> (expand-interval #(2 5))
#
>

GBBopen 1.5 Reference
5.3 Intervals

expand-interval interval amount = new-interval

Purpose

Create a new interval by expanding interval by amount.

Packqge :gbbopen

Module :gbbopen-core

Arguments
interval An interval
amount A numbe

new-interval An interval

Returns
A new, expanded interval.

Description

[Function]

The structure of the original interval (cons, two-element list, or two-element array) is maintained in

the newly allocated, expanded new-interval.

An interval that is contracted (expanded negatively) by an amount greater than one-half of its width

will result in a zero-width new-interval at the center point of the original interval.

See also

coerce-contracted-interval-rationals-to-floats (page

copy-interval
infinite-interval
interval-start
interval-end
interval-values
make-interval
nexpand-interval
nshift-interval
shift-interval

Examples
> (expand-interval ' (2 5) 2)
(0 7)

> (expand-interval 7 (2 . 5) -1)
(3 . 4)

> (expand-interval #(2 5) .5)
#(1.5 5.5)

> (expand-interval " (2 . 5) -3)
(3.5 . 3.5)

>

GBBopen 1.5 Reference
5.3 Intervals

(page
(page
(page
(page
(page
(page
(page
(page
(page

417)
418)
421)
423)
422)
424)
425)
426)
427)
428)

419

expand-point point amount soptional type-specifier = new-interval [Function]

Purpose
Create a new interval by expanding point by amount.

Package :gbbopen

Module :gbbopen-core

Arguments
point A number
amount A number

type-specifier One of: cons, 1ist, or array. (Default is cons.)
new-interval An interval

Returns
The new interval.

See also

expand-interval (page 419)
interval-start (page 423)
interval-end (page 422)
interval-values (page 424)
make-interval (page 425)
nexpand-interval (page 426)
nshift-interval (page 427)
shift-interval (page 428)

Examples
> (expand-point 3 2)
(L . 5)
> (expand-point 3 2 ’cons)
(1L . 5)
> (expand-point 3 2 ’list)
(1 5)
> (expand-point 3 2 ’'array)
#(1 5)

>

Note

Declared numeric (see page 143) and pseudo probability (see page 149) versions of expand-point are
also provided: expand-point&, expand-point$&, expand-point$, expand-point$$,
expand-point$$$, and expand-point%.

GBBopen 1.5 Reference
420 5.3 Intervals

infinite-interval

Purpose
An interval (represented as a cons) from —infinity to infinity.

Package :gbbopen

Module :gbbopen-core

Value type A cons

Value (-infinity . infinity)

See also

copy-interval (page 418)
expand-interval (page 419)
interval-end (page 422)
interval-start (page 423)
interval-values (page 424)
make-interval (page 425)
nexpand-interval (page 426)
nshift-interval (page 427)
shift-interval (page 428)

Example

Define a unit class, temporal-duration-mixin, that contains a temporal-duration slot and

dimension value declaration:

> (define-unit-class temporal-duration-mixin ()
((temporal-duration
;7 Copy the interval to allow destructive changes by
;; GBBopen’s interval operators:
:initform (copy-interval infinite-interval)))
(:dimensional-values
(temporal-duration :interval temporal-duration)))
#<standard-unit-class temporal-duration-mixin>
>

GBBopen 1.5 Reference
5.3 Intervals

[Constant]

421

interval-end interval = end-value [Function]

Purpose
Obtain the end value of an interval.

Seftf syntax
(setf (interval-end interval) end-value) = end-value

Package :gbbopen
Module :gbbopen-core

Arguments
interval An interval
end-value A number

Returns
The end value of the interval.

See also

interval-start (page 423)
interval-values (page 424)

Examples

> (interval-end ' (1 2))
(interval-end " (1 . 2))

2
>
2
> (interval-end #(1 2))

2

> (defparameter *xx (make-interval 1 2))
* X *

> *X*

1 . 2)

(setf (interval-end #*x=*) 4)

* XK

(
>
4
>

(1 . 4)
>

GBBopen 1.5 Reference
422 5.3 Intervals

interval-start interval = start-value [Function]

Purpose
Obtain the start value of an interval.

Seftf syntax
(setf (interval-start interval) start-value) = start-value

Package :gbbopen
Module :gbbopen-core

Arguments
interval An interval
start-value A number

Returns
The start value of the interval.

See also

interval-end (page 422)
interval-values (page 424)

Examples
> (interval-start ' (1 2))

(interval-start ' (1 . 2))

1
>
1
> (interval-start #(1 2))

1

> (defparameter *xx (make-interval 1 2))
* X *

> *X*

(1 . 2)

> (setf (interval-start =*xx) -1)

-1

> *kX*

(-1 . 4)

>

GBBopen 1.5 Reference
5.3 Intervals 423

interval-values interval = start-value, end-value

Purpose
Obtain the start and end values of an interval.

Seftf syntax
(setf (interval-values interval) source-interval) = source-interval

Package :gbbopen

Module :gbbopen-core

Arguments

interval An interval
source-interval An interval
start-value A number
end-value A number
Returns

Two values: the start value and the end value of the interval.

See also

interval-end (page 422)
interval-start (page 423)

Examples
> (interval-values ' (1 2))
1
2
> (interval-values ' (1 . 2))
1
2
> (interval-values #(1 2))
1
2
> (defparameter #*xx (make-interval 1 2))
* X *
> kX%
(1 . 2)
> (setf (interval-values *xx*x) #(3 4))
#(3 4)
> *X*
(3 . 4)
>
424

[Function]

GBBopen 1.5 Reference
5.3 Intervals

make-interval start end soptional type-specifier = new-interval

Purpose
Create a new interval of type type-specifier.

Package :gbbopen

Module :gbbopen-core

Arguments
start A number
end A number

type-specifier One of: cons, 1ist, or array. (Default is cons.)
new-interval An interval

Returns
The new interval.

See also

copy-interval (page 418)
expand-interval (page 419)
expand-point (page 420)
infinite-interval (page 421)
interval-start (page 423)
interval-end (page 422)
nexpand-interval (page 426)
nshift-interval (page 427)
shift-interval (page 428)

Examples
> (make—-interval 2 5)
(2 . 5)
> (make-interval 2 5 ’list)
(2 5)
> (make—interval 2 5 ’cons)
(2 . 5)
> (make-interval 2 5 "array)
#(2 5)

>

GBBopen 1.5 Reference
5.3 Intervals

[Function]

425

nexpand-interval interval amount = interval

Purpose

Expand an interval by amount.
Package :gbbopen
Module :gbbopen-core

Arguments
interval An interval
amount A number

Returns
The expanded interval.

Description

[Function]

An interval that is contracted (expanded negatively) by an amount greater than one-half of its width

will result in a zero-width interval at the center point of the original interval.

See also

coerce-contracted-interval-rationals-to-floats (page

copy-interval
expand-interval
expand-point
infinite-interval
interval-start
interval-values
interval-end
make-interval
nshift-interval
shift-interval

Examples
> (nexpand-interval ' (2 5) 2)
(0 7)
> (nexpand-interval " (2 . 5) -1)
(3 . 4)
> (nexpand-interval #(2 5) .5)
#(1.5 5.5)
> (nexpand-interval ' (2 . 5) =-3)
(3.5 . 3.5)
>

426

(page
(page
(page
(page
(page
(page
(page
(page
(page
(page

417)
418)
419)
420)
421)
423)
424)
422)
425)
427)
428)

GBBopen 1.5 Reference
5.3 Intervals

nshift-interval interval amount = interval

Purpose
Shift an interval by amount.

Package :gbbopen
Module :gbbopen-core

Arguments
interval An interval
amount A number

Returns
The shifted interval.

See also

copy-interval (page 418)
expand-interval (page 419)
expand-point (page 420)
infinite-interval (page 421)
interval-end (page 422)
interval-start (page 423)
interval-values (page 424)
make-interval (page 425)
nexpand-interval (page 426)
shift-interval (page 428)

Examples
> (nshift-interval ' (2 5) 2)
(4°7)
> (nshift-interval ' (2 . 5) -1)
(1 . 4)
> (nshift—-interval #(2 5) .5)
#(2.5 5.5)

>

GBBopen 1.5 Reference
5.3 Intervals

[Function]

427

shift-interval interval amount = new-interval

Purpose

Create a new interval by shifting interval by amount.

Package :gbbopen

Module :gbbopen-core

Arguments
interval An interval
amount A number

new-interval An interval

Returns
A new, shifted interval.

Description

[Function]

The structure of the original interval (cons, two-element list, or two-element array) is maintained in

the newly allocated, shifted new-interval.

See also

copy-interval (page
expand-interval (page
expand-point (page
infinite-interval (page
interval-end (page
interval-start (page
interval-values (page
make-interval (page

nexpand-interval (page 426)

nshift-interval (page

Examples

> (shift-interval ’ (2 5)

(4°7)
(shift-interval
1 . 4)

(2.5 5.5)

428

418)
419)
420)
421)
422)
423)
424)
425)

427)

" (2

>
(
> (shift—-interval #(2 5)
#
>

2)

-1)

.5)

GBBopen 1.5 Reference
5.3 Intervals

5.4 Blackboard Repository

This section contains : gbbopen-core entities that pertain to space instances and the blackboard
repository.

GBBopen 1.5 Reference
5.4 Blackboard Repository 429

add-instance-to-space-instance unit-instance space-instance-or-path [Generic Function]
= unit-instance

Purpose
Add a unit instance to a space instance.

Method signatures

add-instance-to-space-instance (unit-instance standard-unit—-instance) (space-instance-path
cons) = unit-instance

add-instance-to-space-instance (unit-instance standard-unit-instance) (space-instance
standard-space—-instance) = unit-instance

Package :gbbopen
Module :gbbopen-core

Arguments
unit-instance The unit instance to be added
space-instance-or-path The space instance or space-instance path to which the unit instance is to be

added
Returns
The supplied unit-instance
Events
An instance-added-to-space-instance-event is signaled.
See also
define-unit-class (page 330)
make-instance (page 364)
make-space-instance (page 455)

remove-instance-from-space-instance (page 460)

Examples
Add a highly plausible hypothesis unit instance, good-hyp, to the hyps space instance:
> (add-instance-to-space-instance
good-hyp (find-space-instance-by-path ’ (bb hyps)))
#<hyp 419 (1835 4791) 0.85 [5..35]>
>

or

> (add-instance-to-space-instance good-hyp ’ (bb hyps))
#<hyp 419 (1835 4791) 0.85 [5..35]>
>

GBBopen 1.5 Reference
430 5.4 Blackboard Repository

allowed-unit-classes-of space-instance [Generic Function]
= extended-unit-classes-specification-list

Purpose
Return the extended unit-classes specifications of unit classes whose instances are allowed on a
space instance.

Method signatures
allowed-unit-classes-of (space-instance standard-space—instance) =
extended-unit-class-specification-list

Packqge :gbbopen
Module :gbbopen-core

Arguments
space-instance A space instance
extended-unit-classes-specification-list A proper list

Returns

A list of extended unit-classes specifications; t, if instances of any unit class are allowed on the
space instance; or nil, if no unit instances are allowed on the space instance

See also

make-space-instance (page 455)

Example
Return the extended unit-classes specifications describing the allowed classes that can have their
unit instances stored on the (bb hyps) space instance:

> (allowed-unit-classes-of ’ (bb hyps))
((hyp :plus-subclasses))
>

GBBopen 1.5 Reference
5.4 Blackboard Repository 431

change-space-instance space-instance skey allowed-unit-classes dimensions storage [Function]
= space-instance

Purpose
Change the dimensions, allowed unit classes, and storage of a space instance.

Package :gbbopen
Module :gbbopen-core

Arguments
space-instance-or-path The space instance or space-instance path to be changed
allowed-unit-classes An extended unit-classes specification or nil (see below; default is t)

dimensions A list of (dimension-name dimension-type-specifier) pairs (default is nil)

storage A storage specification (see below; defaultis (t t unstructured) or nil if
allowed-unit-classes is nil)

space-instance The space instance

Returns

The space instance that was changed.

Events

When the allowed unit classes of space-instance are made more restrictive, unit instances that are no
longer allowed on the space instance are removed from space-instance, signaling a
instance-removed-from—-space-instance-event for each removed unit instance.

Detailed syntax
allowed-unit-classes ::= unit-classes-specifier | nil

dimension-type-specifier ::= :ordered | (:ordered [ordered-comparison-type]) |
:enumerated | (:enumerated [enumerated-comparison-typel) |
:boolean | (:boolean [boolean-comparison-typel)

ordered-comparison-type ::= number | fixnum | short—float | single-float |

double-float | long-float |

pseudo-probability
enumerated-comparison-type ::= eq | eql | equal | equalp
boolean-comparison-type ::= t

unit-classes-specifier ::= t | single-unit-class-specifier | (single-unit-class-specifier™)
single-unit-class-specifier ::= atomic-unit-class | (atomic-unit-class subclassing-specifier)
atomic-unit-class ::= unit-class | unit-class-name

storage ::= (unit-class-specifier dimension-names storage-specification) *
dimension-names ::= dimension-name | (dimension-name™) |t
storage-specification ::= unstructured |

boolean |

uniform-buckets :layout dimension-buckets-specification™ |
hashed [:size integer]
dimension-buckets-specification ::= (start-value end-value bucket-width)

GBBopen 1.5 Reference
432 5.4 Blackboard Repository

change-space-instance

The default ordered-comparison-type, if unspecified, is number. The default
enumerated-comparison-type, if unspecified, is eql. The default boolean-comparison-type is t.

Terms

dimension-name A symbol specifying a dimension

See also

make-space-instance (page 455)

Examples

Change the storage of space instance (bb hyp) to the default unstructured storage for all
unit instances:

> (change-space-instance ’ (bb hyps) :storage nil)
#<standard-space-instance (bb hyps)>
>

Now change it to store hyp unit instances with uniform-bucket storage for indexing in the x and y
dimensions and hashed storage in the classification dimension:

> (change-space-instance ’ (bb hyps)

:storage ' (((hyp :plus—-subclasses) (x V)
uniform-buckets :layout ((0 10000 100)
(0 10000 100)))
((hyp :plus-subclasses) (classification)
hashed)))
#<standard-space-instance (bb hyps)>

>

Now change it to store only hyp unit instances (no subclasses) with uniform-bucket storage for
indexing in the x and y dimensions and hashed storage in the classification dimension:

> (change-space—-instance ’ (bb hyps)
rallowed-unit-classes ’hyp
:storage ' ((hyp (x y)
uniform-buckets :layout ((0 10000 100)
(0 10000 100)))
(hyp (classification) hashed)))
#<standard-space-instance (bb hyps)>
>

Any unit instances that are subclasses of hyp are removed from the (bb hyps) space instance by the
above change in allowed unit classes.

change-space-instance

GBBopen 1.5 Reference
5.4 Blackboard Repository 433

children-of space-instance = space-instances [Generic Function]
Purpose
Return the child space instances of a space instance.

Method signatures
children-of (space-instance standard-space—instance) = space-instances

Packqge :gbbopen
Module :gbbopen-core

Arguments
space-instance A space instance
space-instances A proper list

Returns

A list of the child space instances.
See also

make-space-instance (page 455)
parent-of (page 459)
Example

Return the child space instances of the (bb) space instance:
> (children-of (find-space-instance-by-path ' (bb))
(#<standard-space-instance (bb hyps)>
#<standard-space-instance (bb probable-hyps)>

#<standard-space-instance (bb rejected-hyps)>)
>

Note
The returned list of child space instances should not be destructively altered.

GBBopen 1.5 Reference
434 5.4 Blackboard Repository

clear-space-instances space-instances [Function]

Purpose
Remove (but not delete) all unit instances from space instances.

Packoge :gbbopen
Module :gbbopen-core

Arguments

space-instances A space instance, a list of space instances, a space-instance path regular expression,
or t (indicating all space instances)

Events
A instance-removed-from-space-instance-event is signaled for each unit instance that is
removed from a space instance.

See also

do-instances-on-space-instances (page 472)
map-instances-on-space-instances (page 493)

Examples
Remove all the unit instances that reside on the (bb probable—hyps) space instance:

(clear—-space-instances
(find-space-instance-by-path ’ (bb probable-hyps)))

or

(clear-space-instances ' (bb probable-hyps))

or

(clear—-space-instances
(find-space—-instances ’ (bb probable-hyps)))

GBBopen 1.5 Reference
5.4 Blackboard Repository 435

confirm-if-blackboard-repository-not-empty-p skey describe-non-empty-repository [Function]
pending-action = boolean

Purpose
Obtain confirmation if the blackboard repository is not empty.

Package :gbbopen

Module :gbbopen-core

Arguments

describe-non-empty-repository A generalized boolean (default is nil)
pending-action A string (default is "deleted")
boolean A generalized boolean

Returns

True if the blackboard repository is empty or the user has confirmed positively; otherwise nil.

Description

If the blackboard repository is not empty and describe-non-empty-repository is true, the blackboard
repository is described (using describe-blackboard-repository) when asking for confirmation.

The pending-action string is used to indicate to the user what is to happen if confirmed positively.

See also
empty-blackboard-repository-p (page 451)

Examples
> (confirm-if-blackboard-repository-not-empty-p)
The blackboard repository is not empty.
Continue anyway (the current contents will be deleted) [y or n]? n
nil
> (confirm-if-blackboard-repository-not-empty-p
describe-non-empty-repository ’t)

Space Instance Contents

known-world 53 instances (52 location; 1 path)

Unit Class Instances

control-shell 1
ks 4
ksa—-queue 2
location 52
ordered-ksa—-queue 1
path 1
standard-space-instance 1

GBBopen 1.5 Reference
436 5.4 Blackboard Repository

confirm-if-blackboard-repository-not-empty-p

62 instances
The above blackboard repository is not empty.
Continue anyway (the current contents will be deleted) [y or nl? n
nil
> (confirm-if-blackboard-repository-not-empty-p :pending-action "happy")
The blackboard repository is not empty.
Continue anyway (the current contents will be happy) [y or nl? y
t
>

confirm-if-blackboard-repository-not-empty-p

GBBopen 1.5 Reference
5.4 Blackboard Repository 437

define-space-class space-class-name ({superclass-name}”) ({slot-specifier}™) [Macrol]
{class-option}™ = new-space-class

Purpose
Define or redefine a space class.

Packqge :gbbopen
Module :gbbopen-core

Arguments

space-class-name A non-nil, non-keyword symbol that names the space class

superclass-name A non-nil, non-keyword symbol that specifies a direct superclass of the space class
space-class-name

slot-specifiers See below

class-options See below

new-space-class A new or modified space class object

Returns
The newly defined or modified space class object.

Errors

The specified superclass-names do not include at least one space class name. This error is signaled on
class finalization.

Detailed syntax

(Syntax shown in gray is not supported in GBBopen Version 1.5, but will become available in a future release.)

slot-specifier ::= slot-name |
(nonlink-slot-name [[nonlink-slot-option]]) |
(link-slot-name [[link-slot-option]])

nonlink-slot-name ::= slot-name
link-slot-name ::= slot-name
link-slot-option ::= slot-option |

{: 1ink inverse-link-slot-specifier} |

{:singular boolean} |

{:sort-function function} |

{: sort-key function}
inverse-link-slot-specifier ::= (unit-class-name link-slot-name [: singular boolean]) |

:reflexive
nonlink-slot-option ::= slot-option |
{: reader reader-function-name}” |
{:writer writer-function-name}”

slot-option ::= {: accessor reader-function-name}™ |
{:allocation allocation-type} |
{:documentation string} |
{:initarg initarg-name}” |
{:initform form} |
{:type type-specifier}

GBBopen 1.5 Reference
438 5.4 Blackboard Repository

define-space-class

class-option ::= (:abstract boolean) |

(:default-initargs . initarg-list) |

(:dimensional-values dimension-value-specifier™) |

(:documentation string) |

(:estimated-instances integer) \

(:export-accessors boolean) |

(:export—-class—name boolean) |

(:export-slot-names direct-slots-specifier) |

(:generate—accessors direct-slots-specifier) |

(:generate—accessors—format {:prefix | :suffix} |

(:generate—accessors-prefix {string | symbol}) |

(:generate-accessors-suffix {string | symbol}) |

(:generate—initargs direct-slots-specifier) |

(:initial-space-instances initial-space-instance-specifier) |

(:instance—-name-comparison-test instance-name-comparison-test) |

(:metaclass class-name) |

(:retain {boolean | :propagate}) |
(:use—-global-instance-name—counter boolean)

initial-space-instance-specifier ::= {space-instance-path™ | function}

dimension-value-specifier ::= incomposite-dv-specifier | composite-dv-specifier

incomposite-dv-specifier ::= (dimension-name dimension-value-spec dimension-value-place)
composite-dv-specifier ::= (dimension-name dimension-value-specifier

composite-type dimension-value-place)
composite-type ::= :set | : sequence |

{:ascending-series ordering-dimension-name} |
{:descending-series ordering-dimension-name}
dimension-value-specifier ::= dimension-value-type |
(ordered-dimension-value-type [ordered-comparison-type]) |
(enumerated-dimension-value-type [enumerated-comparison-typel) |
(boolean-dimension-value-type [boolean-comparison-type])
dimension-value-type ::= ordered-dimension-value-type |
enumerated-dimension-value-type |
boolean-dimension-value-type

ordered-dimension-value-type ::= :point | :interval | :mixed
enumerated-dimension-value-type ::== :element

boolean-dimension-value-type ::= :boolean

ordered-comparison-type ::= number | fixnum | short-float | single-float |

double-float | long-float |

pseudo-probability
enumerated-comparison-type ::= eq | eql | equal | equalp
boolean-comparison-type ::= t
dimension-value-place ::= {slot-name [slot-namel} | {function [slot-namel}
direct-slots-specifier ::= nil | t | included-slot-name™ |

{t :exclude excluded-slot-name*}

The default ordered-comparison-type, if unspecified, is number. The default
enumerated-comparison-type, if unspecified, is eql. The default boolean-comparison-type is t.

A dimension-value-place with two slot-names is allowed only for an : interval dimension-value
specification.

Terms

GBBopen 1.5 Reference
5.4 Blackboard Repository 439

define-space-class

class-name A non-nil, non-keyword symbol that names a class
documentation A documentation string

initarg-list An initialization argument list

slot-name A non-nil, non-keyword symbol

instance-name-comparison-test One of the four standardized hash table test function names: eq,
eql, equal, or equalp (default for classes of metaclass
standard-unit-class is eql)

Description
A dimension-value-place with two slot-names can be specified only for : interval dimension-value
types.

Each superclass-name argument specifies a direct superclass of the new class. If the superclass list is
empty, then the direct superclass defaults to the single class standard-space-instance.

The :metaclass class-name class option, if specified, must be a subclass of standard-space-class.
The default metaclass value is standard-space-class.

Inheritance of class options

The set of dimensional-values for a unit class is the union of the sets specified in the
dimensional-values options of the class and its superclasses. When more than one dimension-value
specification is supplied for a given dimension, the one supplied by the most specific class is used.

The effective initial-space-instances value for a unit class is the value specified in the definition of the
most specific unit class. (No additive inheritance of initial-space-instances is performed.) If no
definitions specify an initial-space-instances value, nil is used.

The instance-name-comparison-test value is not inherited. If no value is specified in the unit-class
definition, the default initialization value associated with the metaclass is used.

If a retain value is not specified, a value of : propagate is used as the default if any parent
unit classes have a :propagate retention value; otherwise nil is used as the default value.

The use-global-instance-name-counter value is not inherited. If no value is specified in the unit-class
definition, the default initialization value associated with the metaclass is used.

See also

define-unit-class (page 330)
delete-blackboard-repository (page 442)
make-space-instance (page 455)
standard-space-class (page 463)
standard-space-instance (page 464)

with-generate-accessors-format (page 136)

Example

Define a space class, space-instance-with-lock, that has an additional slot containing a lock
that can be used to synchronize operations on each space instance of that class. Then, create one
instance of the space-instance-with-lock space class.

> (define-space-class space-with-lock ()

((lock :initform (make-lock :name "Space-Instance Lock"))))
#<standard-space-class space-with-lock>
> (make-space—-instance ’ (bb hyps)

GBBopen 1.5 Reference
440 5.4 Blackboard Repository

define-space-class

:class 'space-with-lock)
#<space-with-lock (bb hyps)>
>

define-space-class

GBBopen 1.5 Reference
5.4 Blackboard Repository 441

delete-blackboard-repository skey all-classes disable-events retain-classes [Function]

Purpose
Delete all unit and space instances.

Package :gbbopen
Module :gbbopen-core

Arguments
all-classes A generalized boolean (default is ni1)

disable-events A generalized boolean (default is t)

retain-classes An extended unit-classes specification (see below)

Events

If disable-events is ni1, the following events may be signaled as unit instances and space instances
are deleted:

e delete-instance-event
e unlink-event
e instance-removed-from-space-instance-event

e instance—-deleted-event

Detailed syntax

unit-classes-specifier ::= t | single-unit-class-specifier | (single-unit-class-specifier™)
single-unit-class-specifier ::= atomic-unit-class | (atomic-unit-class subclassing-specifier)
atomic-unit-class ::= unit-class | unit-class-name

Description

Calling delete-blackboard-repository deletes all unit instances and space instances that have not
been defined with a : retain class option (unless overridden by all-classes). All unit instances of
unit classes specified by retain-classes are also retained. If both all-classes and retain-classes are
specified, the classes specified retain-classes are retained, but all other unit instances are deleted.
The instance-name counters of all non-retained unit classes are reset to their initial values.

Delete-blackboard-repository does not undefine any class definitions, functions, methods, etc.

See also

confirm-if-blackboard-repository-not-empty-p (page 436)
delete-instance (page 334)
delete-all-space-instances (page 444)
delete-space-instance (page 445)
initial-class-instance-number (page 352)

GBBopen 1.5 Reference
442 5.4 Blackboard Repository

delete-blackboard-repository

Examples
Delete all unit instances and space instances (except for the unit instances of unit classes that have
been defined to be retained by default):

(delete-blackboard-repository)

As above, but also delete all unit instances of unit classes that have been defined to be retained by
default:

(delete-blackboard-repository :all-classes ’t)

Note

This function and reset-gbbopen are the only GBBopen functions that disable event signaling by
default. This conflicts with the normal use of with-events-disabled and with-events-enabled
macros for controlling event signaling, but having events disabled is the desired behavior in almost
every delete-blackboard-repository situation.

delete-blackboard-repository

GBBopen 1.5 Reference
5.4 Blackboard Repository 443

delete-all-space-instances <no arguments>

Purpose
Delete all space instances.

Package :gbbopen
Module :gbbopen-core

Events

[Function]

A delete-instance-event is signaled at the start of the deletion process of each space instance
and an instance-deleted-event is signaled when the deletion of each space instance has been
completed. The following events may also be signaled if a space-instance is, itself, on a space instance

or is linked to other unit instances:

e unlink—-event

e instance-removed-from-space-instance-event

See also

delete-all-space-instances (page 444)
delete-blackboard-repository (page 442)
delete-space-instance (page 445)
make-space-instance (page 455)
reset-gbbopen (page 461)
reset-unit-class (page 367)
Example

Delete every space instance:

(delete-all-space—instances)

444

GBBopen 1.5 Reference
5.4 Blackboard Repository

delete-space-instance space-instance-or-path = deleted-space-instance [Generic Function]

Purpose
Delete a space instance.

Method signatures
delete-space-instance (space-instance-path cons) = deleted-space-instance

delete-space-instance (space-instance standard-space-instance) = deleted-space-instance
Package :gbbopen
Module :gbbopen-core

Arguments
space-instance-or-path The space instance or space-instance path to be deleted
deleted-space-instance A space instance

Returns
The deleted space instance.

Events

A delete-instance-event is signaled at the start of the deletion process and an
instance-deleted-event is signaled when the deletion has been completed. The following events
may also be signaled if the space-instance is, itself, on a space instance or is linked to other

unit instances:

e unlink—-event

e instance-removed-from-space-instance-event

See also

delete-all-space-instances (page 444)
delete-blackboard-repository (page 442)
delete-instance (page 334)
make-space-instance (page 455)
reset-gbbopen (page 461)
reset-unit-class (page 367)
Examples

Delete the (bb hyps) space instance:

> (delete-space-instance (find-space-instance-by-path ’ (bb hyps))
#<deleted-unit-instance standard-space-instance (bb hyps) >
>

or simply

> (delete-space-instance ’ (bb hyps)
#<deleted-unit-instance standard-space-instance (bb hyps) >
>

GBBopen 1.5 Reference
5.4 Blackboard Repository 445

delete-space-instance

delete-space-instance

GBBopen 1.5 Reference
446 5.4 Blackboard Repository

describe-blackboard-repository <no arguments> [Function]

Purpose
Print information about the unit and space instances in the blackboard repository.

Package :gbbopen
Module :gbbopen-core

Description

Information is printed about the space instances in the blackboard repository and their contents. The
total count of the unit instances of each unit class (including ones that do not reside on any

space instance) is also printed, as well as a character that indicates if the unit class has been defined
to be retained by delete-blackboard-repository. A plus sign indicates that the retention status will
be propagated to subclasses of the unit class, while an asterisk (x) indicates a retain, But not
propagated, status for the unit class.

The description is printed to the *standard-output* stream.

Example
> (describe-blackboard-repository)

Space Instance Contents
bb
hyps 15223 Instances (hyp 1479; sensor-report 13744)
probable-hyps Empty
rejected-hyps 216 Instances (hyp 216)
Unit Class Instances
control-shell 1 *
hyp 1695
ks 13 +
ksa 891 +
ksa—-queue 2 +
ordered-ksa—-queue 1 +
sensor—report 13744
standard-space—-instance 3

16350 instances

REPL Note

Describe-blackboard-repository can be invoked using the REPL command : dsbb.

GBBopen 1.5 Reference
5.4 Blackboard Repository 447

describe-space-instance space-instance-or-path [Generic Function]
Purpose
Describe a space instance.

Method signatures
describe-space-instance (space-instance-path cons)

describe-space-instance (space-instance standard-space-instance)
Package :gbbopen
Module :gbbopen-core

Arguments
space-instance-or-path A space instance or a space-instance path

Description

The description is printed to the *standard-output* stream.
See also

describe-instance (page 338)
describe-space-instance-storage (page 449)
make-space-instance (page 455)

Example

Describe the hyps space instance:

> (describe-space-instance ’ (bb hyps))
Standard-space-instance #<standard-space-instance (bb hyps) >

Path: (bb hyps)

Allowed unit classes:
(hyp :plus—-subclasses)

Dimensions:
(belief (:ordered number))
(velocity-range (:ordered number))
(color (:enumerated eq))
(classification (:enumerated eq))
(X (:ordered fixnum))
(y (:ordered fixnum))

REPL Note

Describe-space-instance can be invoked using the REPL command:

:dsi {space-instance | space-instance-path}

which also sets = to the described space instance.

GBBopen 1.5 Reference
448 5.4 Blackboard Repository

describe-space-instance-storage space-instance-or-path [Generic Function]
Purpose
Describe the storage structure of a space instance.

Method signatures
describe-space-instance-storage (space-instance-path cons)

describe-space-instance-storage (space-instance standard-space-instance)
Package :gbbopen
Module :gbbopen-core

Arguments
space-instance-or-path A space instance or a space-instance path

Description

The description is printed to the *standard-output* stream.
See also

describe-space-instance (page 448)

describe-instance (page 338)
make-space-instance (page 455)

Example

Describe the storage structure of the hyps space instance:

> (describe-space-instance-storage ’ (bb hyps))
Standard-space—-instance #<standard-space-instance (bb hyps) >
2d-Uniform-Buckets (hyp+) (x y) 1.4 (857/611)

hyp 479
sub-hyp 132
Unstructured-Storage (t) t N/A
>
REPL Note

Describe-space-instance-storage can be invoked using the REPL command:

:dsis {space-instance | space-instance-path}

which also sets = to the described space instance.

GBBopen 1.5 Reference
5.4 Blackboard Repository 449

do-space-instances (var space-instance-regexp) {tag | form}* [Macrol]
Purpose

Iterate over each space instance that matches a path-expression pattern.

Package :gbbopen

Module :gbbopen-core

Arguments
var A variable symbol

space-instance-regexp A space-instance path regular expression specifying the space instances to be
mapped over

declaration A declare expression (not evaluated)
tag A go tag (not evaluated)

form A form

Description

The space-instance-regexp argument is either the symbol t (indicating all space instances) or a list
representing a regular expression where the following reserved symbols are interpreted as follows:
= matches one occurrence in a space-instance path

matches zero or one occurrence in a space-instance path

matches one or more occurrences in a space-instance path

matches zero or more occurrences in a space-instance path

move to parent

>k 4 0|

A space-instance-regexp value consisting of a list of space instances mapped over as supplied.

See also

find-space-instances (page 453)
map-space-instances (page 458)

Example
Remove all hyp unit instances from space instances that are rooted at (bb):
(do-space-instances (space-instance ’ (bb +))

(do—-instances-on-space-instances (unit-instance ’'hyp space-instance)
(remove-instance-from-space—-instance unit-instance space-instance)))

GBBopen 1.5 Reference
450 5.4 Blackboard Repository

empty-blackboard-repository-p = boolean

Purpose
Determine if the blackboard repository is empty.

Package :gbbopen
Module :gbbopen-core

Arguments
boolean A generalized boolean

Returns
True if the blackboard repository is empty; otherwise nil.

See also
confirm-if-blackboard-repository-not-empty-p (page 436)

Examples

> (empty-blackboard-repository-p)

nil

> (delete-blackboard-repository :all-classes ’'t)
t
> (empty-blackboard-repository-p)
t
>

GBBopen 1.5 Reference
5.4 Blackboard Repository

[Function]

451

find-space-instance-by-path space-instance-path = space-instance or nil [Function]

Purpose
Return the space instance with the specified space-instance path.

Package :gbbopen

Module :gbbopen-core

Arguments

space-instance-path A space-instance path specifying the space instance to be returned
space-instance A space instance or nil

Returns

The specified space instance if it exists; nil otherwise.

See also

find-space-instances (page 453)

Example
Find the space instance with path (bb hyps):

> (find-space-instance-by-path ’ (bb hyps))
#<standard-space-instance (bb hyps) >
>

REPL Note

Find-space-instance-by-path can be invoked using the REPL command:

:fsi {space-instance | space-instance-path}

which sets = to the found space instance.

GBBopen 1.5 Reference
452 5.4 Blackboard Repository

find-space-instances space-instance-regexp = space-instances [Function]

Purpose
Return the space instances that match a path-expression pattern.

Package :gbbopen

Module :gbbopen-core

Arguments

space-instance-regexp A space-instance path regular expression specifying the space instances to be
returned

space-instances A proper list

Returns

The specified space instances.

Description

The space-instance-regexp argument is either the symbol t (indicating all space instances) or a list
representing a regular expression where the following reserved symbols are interpreted as follows:

matches one occurrence in a space-instance path

matches zero or one occurrence in a space-instance path

matches one or more occurrences in a space-instance path Thus both

matches zero or more occurrences in a space-instance path

move to parent

(find-space—instances ’ (*)) and (find-space—-instances ’t) return all space instances.

P

A space-instance-regexp value consisting of a list of space instances is returned unchanged.

See also
find-space-instance-by-path (page 452)
map-space-instances (page 458)
Examples

Return the space instances that are rooted at (bb):

> (find-space—-instances ’ (bb +))
(#<standard-space-instance (bb hyps)>
#<standard-space-instance (bb probable-hyps)>)
#<standard-space-instance (bb rejected-hyps)>)
>

Return all the space instances (bb) and below:

> (find-space-instances ' (bb x))
(#<standard-space-instance (bb hyps)>
#<standard-space-instance (bb probable-hyps)>)
#<standard-space-instance (bb rejected-hyps)>
#<standard-space-instance (bb)>)

>

GBBopen 1.5 Reference
5.4 Blackboard Repository 453

find-space-instances

find-space-instances

GBBopen 1.5 Reference
454 5.4 Blackboard Repository

make-space-instance path srest initargs skey allowed-unit-classes dimensions [Function]
storage make-parents class
= space-instance

Purpose
Create a new space instance.

Package :gbbopen

Module :gbbopen-core

Arguments

path A space-instance path specifying the location in the blackboard repository where
the new space instance is to be created

initargs An initialization argument list

allowed-unit-classes An extended unit-classes specification or nil (see below; default is t)

dimensions A list of (dimension-name dimension-type-specifier) pairs (default is nil)

storage A storage specification (see below; defaultis (t t unstructured) or nil if
allowed-unit-classes is nil)

make-parents A generalized boolean (default is ni1)

class The name of the space class for the created space instance (default is
standard-space-instance)

space-instance A space instance

Returns

The created space instance.

Events
When a space instance is created, events are signaled in the following sequence:

1. An nonlink-slot-updated-event or link—event is signaled for each slot in the newly
created space instance. A 1ink-event is also signaled for each inverse pointer from an existing
space instance or unit instance to the newly created space instance.

2. An instance-added-to-space-instance-event is signaled for each space instance on
which the newly created space instance is added.

3. A instance-created-event is signaled.

Errors

Use of an initialization argument that has not been declared as valid.

The supplied or generated instance name is identical to the instance name of an existing
unit instance of class.

Detailed syntax
allowed-unit-classes ::= unit-classes-specifier | nil

dimension-type-specifier ::= :ordered | (:ordered [ordered-comparison-type]) |
:enumerated | (:enumerated [enumerated-comparison-typel) |
:boolean | (:boolean [boolean-comparison-typel)

GBBopen 1.5 Reference
5.4 Blackboard Repository 455

make-space-instance

ordered-comparison-type ::= number | fixnum | short-float | single-float |
double-float | long-float |
pseudo-probability
enumerated-comparison-type ::= eq | eql | equal | equalp
boolean-comparison-type ::= t

unit-classes-specifier ::= t | single-unit-class-specifier | (single-unit-class-specifier™)

single-unit-class-specifier ::= atomic-unit-class | (atomic-unit-class subclassing-specifier)
atomic-unit-class ::= unit-class | unit-class-name

storage ::= (unit-class-specifier dimension-names storage-specification) *
dimension-names ::= dimension-name | (dimension-name™) |t
storage-specification ::= unstructured |

boolean |

uniform-buckets :layout dimension-buckets-specification™ |
hashed [:size integer]
dimension-buckets-specification ::= (start-value end-value bucket-width)

The default ordered-comparison-type, if unspecified, is number. The default
enumerated-comparison-type, if unspecified, is eql. The default boolean-comparison-type is t.

Terms

dimension-name A symbol specifying a dimension

Description

Specifying a : space-instances initialization argument causes that value to be used instead of any
:initial-space-instances specification associated with the space class. However, note that
placing a space instance on other space instances is unrelated to the layout of blackboard repository
hierarchy, which is specified by the : paths initialization argument. Placing a space instance on other
space instances is no different from placing any other unit instance on a space instance.

See also

allowed-unit-classes-of (page 431)
change-space-instance (page 432)
children-of (page 434)
define-space-class (page 438)
delete-all-space-instances (page 444)
delete-space-instance (page 445)
describe-instance (page 338)
describe-space-instance (page 448)
describe-space-instance-storage (page 449)
dimensions-of (page 344)
make-instance (page 364)
parent-of (page 459)
Examples

Create a top-level space instance, bb, that cannot store any unit instances:

> (make-space-instance ’ (bb)
:allowed-unit-classes nil)
#<standard-space-instance (bb)>

GBBopen 1.5 Reference
456 5.4 Blackboard Repository

make-space-instance

Now create a space instance for hyp unit instances, named hyps, as a child of bb, with uniform,
100-wide, bucket storage for indexing unit instances with dimension values between 0-10,000 in the
x and y dimensions:

> (make-space—-instance ’ (bb hyps)

:dimensions (dimensions-of ’'hyp)
rallowed-unit-classes ’ ((hyp :plus-subclasses))

:storage ' (((hyp :plus-subclasses) (x V)
uniform-buckets :layout ((0 10000 100)
(0 10000 100)))))

#<standard-space-instance (bb hyps)>
>

Here is an improved space instance for hyp unit instances named hyps, with both uniform-bucket
storage for indexing in the x and y dimensions and hashed storage to retrieve match candidates via
classification dimension values:

> (make-space-instance ’ (bb hyps)
:dimensions (dimensions-of "hyp)
rallowed-unit-classes ' ((hyp :plus—-subclasses))
:storage ' (((hyp :plus-subclasses) (x V)
uniform-buckets :layout ((0 10000 100)
(0 10000 100)))

((hyp :plus-subclasses) (classification)
hashed)))
#<standard-space-instance (bb hyps)>
>
Note

The make-space-instance function is equivalent to using make-instance with the desired

space class and with the initialization argument : instance—name containing the

space-instance path. However, using make-space-instance provides a convenient shorthand and is
preferable stylistically.

make-space-instance

GBBopen 1.5 Reference
5.4 Blackboard Repository 457

map-space-instances function space-instance-regexp [Function]

Purpose
Apply a function once to each space instance that matches a path-expression pattern.

Packoge :gbbopen
Module :gbbopen-core

Arguments
function A function designator specifying a function object of one argument

space-instance-regexp A space-instance path regular expression specifying the space instances to be
mapped over

Description

The space-instance-regexp argument is either the symbol t (indicating all space instances) or a list
representing a regular expression where the following reserved symbols are interpreted as follows:
matches one occurrence in a space-instance path

matches zero or one occurrence in a space-instance path

matches one or more occurrences in a space-instance path

matches zero or more occurrences in a space-instance path

move to parent

>k 4 o0l

A space-instance-regexp value consisting of a list of space instances mapped over as supplied.

See also

do-space-instances (page 450)
find-space-instances (page 453)

Example
Remove all hyp unit instances from space instances that are rooted at (bb):

(map-space—-instances
#’ (lambda (space-instance)
(map-instances-on-space—instances
#’ (lambda (unit-instance)
(remove—-instance-from-space-instance unit-instance
space—-instance))
"hyp
space—-instance))
" (bb +))

GBBopen 1.5 Reference
458 5.4 Blackboard Repository

parent-of space-instance = space-instances [Generic Function]
Purpose
Return the parent space instance of a space instance.

Method signatures
parent-of (space-instance standard-space-instance) = space-instance

Packqge :gbbopen
Module :gbbopen-core

Arguments
space-instance A space instance
space-instances A proper list

Returns

The parent space instance or nil, if space-instance does not have a parent.
See also

children-of (page 434)

make-space-instance (page 455)

Examples
Return the parent space instance of the (bb hyp) space instance:
> (parent-of (find-space-instance-by-path ’ (bb hyp))

#<standard-space-instance (bb)>
>

Return the parent space instance (there is none) of the (bb) space instance:
> (parent-of (find-space-instance-by-path ’ (bb))
nil
>

GBBopen 1.5 Reference
5.4 Blackboard Repository 459

remove-instance-from-space-instance unit-instance space-instance [Generic Function]

Purpose
Remove a unit instance from a space instance.

Method signatures
remove-instance-from-space-instance (unit-instance
standard-unit-instance) (space-instance-path cons)

remove-instance-from-space-instance (unit-instance standard-unit-instance) (Space-instance
standard-space—-instance)

Packqge :gbbopen
Module :gbbopen-core

Arguments
unit-instance The unit instance to be removed

space-instance-or-path The space instance or space-instance path from which the unit instance is to
be removed

Events

A instance-removed-from-space-instance-event is signaled.

See also

add-instance-to-space-instance (page 430)

Examples
Remove an incorrect hypothesis unit instance, incorrect-hyp, from the hyps space instance:

> (remove-instance-from-space-instance

incorrect-hyp (find-space-instance-by-path ’ (bb hyps)))
#<hyp 311 (896 388) 0.68 [0..6]>
>

or

> (remove-instance-from-space—-instance incorrect-hyp ’ (bb hyps))
#<hyp 311 (896 388) 0.68 [0..6]1>
>

GBBopen 1.5 Reference
460 5.4 Blackboard Repository

reset-gbbopen skey disable-events [Function]

Purpose

Unconditionally delete all unit and space instances, remove all event functions, and disable event
printing.

Packqge :gbbopen
Module :gbbopen-core

Arguments
disable-events A generalized boolean (default is t)

Events

If disable-events is ni1, the following events may be signaled (in order) as unit instances and
space instances are deleted:

e delete-instance-event
e unlink-event
e instance-removed-from-space-instance-event

e instance—-deleted-event

Description

Calling reset-gbbopen deletes all unit instances and space instances, disables all event printing,
removes all event functions, and resets all unit-class instance-name counters to their initial values.
Reset-gbbopen does not undefine any class definitions, functions, methods, etc.

See also

confirm-if-blackboard-repository-not-empty-p (page 436)
delete-all-space-instances (page 444)
delete-instance (page 334)
delete-space-instance (page 445)
define-ks-class (page 591)
define-ksa-class (page 595)
define-space-class (page 438)
define-unit-class (page 330)
initial-class-instance-number (page 352)
reset-gbbopen (page 461)
reset-unit-class (page 367)
Example

Prepare for a new application by resetting GBBopen:

> (reset-gbbopen)
t
>

GBBopen 1.5 Reference
5.4 Blackboard Repository 461

reset-gbbopen

Note

This function and delete-blackboard-repository are the only GBBopen functions that disable
event signaling by default. This conflicts with the normal use of with-events-disabled and
with-events-enabled macros for controlling event signaling, but having events disabled is the
desired behavior in almost every reset situation.

reset-gbbopen

GBBopen 1.5 Reference
462 5.4 Blackboard Repository

standard-space-class [Space Class]

Package :gbbopen
Module :gbbopen-core

Description

The class standard-space-class is the default class of space classes defined by define-space-class.
It is a subclass of standard-unit-class.

See also

standard-space-instance (page 464)
standard-unit-class (page 369)

GBBopen 1.5 Reference
5.4 Blackboard Repository 463

standard-space-instance

Package :gbbopen
Module :gbbopen-core

Description

[Unit Class]

The class standard-space-instance is the default class of instances created by
make-space-instance. A space instance is also a unit instance, so standard-space-instance is a
subclass of standard-unit-instance.

See also

deleted-unit-instance (page
print-instance-slots (page
standard-space-class (page
standard-unit-instance (page

464

337)
107)
463)
370)

GBBopen 1.5 Reference
5.4 Blackboard Repository

with-blackboard-repository-locked (skey whostate) form™ = result™

Purpose

After locking the blackboard repository, execute forms and then release the lock.

Package :gbbopen
Module :gbbopen-core

Arguments

whostate A string (default "With Blackboard Repository Locked")
forms An implicit progn of forms to be evaluated

results The values returned by evaluating the last form

Returns
The values returned by evaluating the last form.

See also
thread-whostate (page 259)

Example
Lock the blackboard repository and do some stuff:

(with-blackboard-repository-locked ()
(do—some-stuff))

Note
The whostate value is ignored by SBCL.

GBBopen 1.5 Reference
5.4 Blackboard Repository

[Macro]

465

http://sbcl.sourceforge.net

5.5 Instance Retrieval

This section contains : gbbopen-core entities that pertain to unit-instance retrieval and
unit-instance iteration and mapping.

GBBopen 1.5 Reference
466 5.5 Instance Retrieval

find-verbose

Purpose

[Variable]

Controls the printing of retrieval and matching information by do-instances-on-space-instances,

filter-instances, find-instances, and map-instances-on-space-instances when the keyword

argument :verbose has not been specified.
Packqge :gbbopen

Module :gbbopen-core

Value type A generalized boolean

Initial value ni1

See also

do-instances-on-space-instances (page 472)
filter-instances (page 476)
find-instances (page 483)

map-instances-on-space-instances (page 493)

GBBopen 1.5 Reference
5.5 Instance Retrieval

467

use-marking

Purpose

[Variable]

Controls the use of instance marking versus ESETSs for retrieval and matching by
do-instances-on-space-instances, find-instances, and map-instances-on-space-instances

when the keyword argument : use-marking has not been specified.

Packqge :gbbopen
Module :gbbopen-core
Value type A generalized boolean

Initial value +«

See also

do-instances-on-space-instances (page 472)
filter-instances (page 476)
find-instances (page 483)

map-instances-on-space-instances (page 493)

468

GBBopen 1.5 Reference
5.5 Instance Retrieval

warn-about-unusual-requests

Purpose

Control warning messages of “unusual” do-instances-on-space-instances, find-instances, and

map-instances-on-space-instances requests that are likely to be mistakes.
Packqge :gbbopen

Module :gbbopen-core

Value type A generalized boolean

Initial value True

See also

do-instances-on-space-instances (page 472)
filter-instances (page 476)
find-instances (page 483)

map-instances-on-space-instances (page 493)

Example
Suppress the warning message associated with an unachievable retrieval pattern:
> (filter—-instances nil ' (and (> x 3) (< x 2)))
;7 Warning: Pattern (and (> X 3) (< X 2)) can not be satisfied.
nil
> (let ((xwarn-about-unusual-requestsx nil))
(filter—instances nil ’ (and (> x 3) (< x 2))))
nil
>

GBBopen 1.5 Reference
5.5 Instance Retrieval

[Variable]

469

do-instances-of-class (var unit-classes-specifier) declaration™ {tag | form}* [Macrol]

Purpose
Iterate over all unit instances of the specified unit classes.

Packqge :gbbopen

Module :gbbopen-core

Arguments

var A variable symbol

unit-classes-specifier An extended unit-classes specification (see below)
declaration A declare expression (not evaluated)

tag A go tag (not evaluated)

form A form

Detailed syntax

unit-classes-specifier ::= t | single-unit-class-specifier | (single-unit-class-specifier™)
single-unit-class-specifier ::= atomic-unit-class | (atomic-unit-class subclassing-specifier)
atomic-unit-class ::= unit-class | unit-class-name

subclassing-specifier ::= :plus-subclasses | :no-subclasses |+ | =

The shorthand + subclasses specifier is equivalent to :plus-subclasses and = to :no-subclasses.

Description

The iteration over the unit instances of the specified unit classes is performed once for each
unit instance, whether or not the instances reside on any space instances.

See also

class-instances-count (page 329)
clear-space-instances (page 435)
do-instances-on-space-instances (page 472)
find-instances-of-class (page 488)
make-instances-of-class-vector (page 490)
map-instances-of-class (page 491)
map-instances-on-space-instances (page 493)
map-sorted-instances-of-class (page 496)
Examples

Delete all unit instances of the unit class hyp:

(do-instances-of-class (instance ’"hyp)
(delete-instance instance))

Delete all unit instances of the unit class hyp and instances of subclasses of hyp:

(do-instances-of-class (instance '’ (hyp :plus-subclasses))
(delete—instance instance))

GBBopen 1.5 Reference
470 5.5 Instance Retrieval

do-instances-of-class

or simply:

(do-instances-of-class (instance '’ (hyp +))
(delete-instance instance))

Note

The consequences are unspecified if an attempt is made to add or delete a unit instance while
do-instances-of-class is in progress. There is one exception to this restriction: the current

unit instance in the iteration (bound to var) can be deleted, provided that the deletion does not trigger
the deletion of any other unit instances. For example, the following form intended to delete all

space instances violates this restriction:

(do-instances-of-class (space—-instance
" (standard-space—-instance :plus-subclasses))
(delete-space—-instance space-instance))

because deletion of a space instance with children automatically deletes those child space instances.
The function delete-all-space-instances provides an efficient means of deleting all space instances
without violating this rule.

REPL Note

The equivalent of (do-instances—-of-class (instance arg) (print instance)) can be
invoked using the REPL command :pic [arg]. If arg is omitted, t is assumed.

do-instances-of-class

GBBopen 1.5 Reference
5.5 Instance Retrieval 471

do-instances-on-space-instances (var unit-classes-specifier space-instances skey pattern [Macro]
filter-before filter-after use-marking verbose)
{tag | form}*

Purpose
Iterate over each unit instance on space instances, optionally selected by a retrieval pattern.

Packqge :gbbopen
Module :gbbopen-core
Arguments

var A variable symbol

unit-classes-specifier An extended unit-classes specification (see below)

space-instances A space instance, a list of space instances, a space-instance path regular
expression, or t (indicating all space instances)

pattern A retrieval pattern (see below; default is t)

filter-before A single-argument predicate to be applied before pattern-matching tests occur

filter-after A single-argument predicate to be applied after pattern-matching tests occur

use-marking A generalized boolean (default is *use-marking*)

verbose A generalized boolean (default is *find-verbose*)

declaration A declare expression (not evaluated)

tag A go tag (not evaluated)

form A form

Detailed syntax

unit-classes-specifier ::= t | single-unit-class-specifier | (single-unit-class-specifier™)
single-unit-class-specifier ::= atomic-unit-class | (atomic-unit-class subclassing-specifier)
atomic-unit-class ::= unit-class | unit-class-name

subclassing-specifier ::= :plus-subclasses | :no-subclasses |+ | =

The shorthand + subclasses specifier is equivalent to : plus—-subclasses and =to :no-subclasses.

pattern ::= subpattern |t | :all
subpattern ::= pattern-element |
(not subpattern) |
(and subpattern™) |
(or subpattern™)
pattern-element ::= (pattern-op dimension-names pattern-values option™) |
(boolean-dimension-unary-pattern-op dimension-names option™)
pattern-op ::= ordered-dimension-pattern-op |
enumerated-dimension-pattern-op |
boolean-dimension-binary-pattern-op
ordered-dimension-pattern-op ::= ordered-dimension-any-numeric-value-pattern-op |
ordered-dimension-explicit-type-pattern-op

GBBopen 1.5 Reference
472 5.5 Instance Retrieval

do-instances-on-space-instances

ordered-dimension-explicit-type-pattern-op ::= ordered-dimension-fixnum-pattern-op |
ordered-dimension-short-float-pattern-op |
ordered-dimension-single-float-pattern-op |
ordered-dimension-double-float-pattern-op |
ordered-dimension-long-float-pattern-op |
ordered-dimension-pseudo-probability-pattern-op
ordered-dimension-any-numeric-value-pattern-op ::= < | <=|>=|>|=]| /=]
within| covers |overlaps |
abuts | starts | ends
ordered-dimension-fixnum-pattern-op ::= <& | <=& | >=s | >& | =& | /=& |
withins | coverss | overlapsé |
abutsé& | startsé | endss
ordered-dimension-short-float-pattern-op ::= <$& | <=$& | >=S& | >S$& | =S& | /=$& |
withinS$& | covers$s | overlaps$s |
abuts$s | starts$s | endsSs
ordered-dimension-single-float-pattern-op ::= <$ | <=$ | >=$|>$|=5| /=%
within$ | covers$ | overlapss$ |
abuts$ | starts$ | ends$
ordered-dimension-double-float-pattern-op ::= <$$ | <=5$$|>=85|>$$|=8$| /=55 |
within$$ | covers$s | overlaps$s$ |
abuts$$ | startss | endss$s
ordered-dimension-long-float-pattern-op ::= <$$$ | <=$$$|>=55%| >$85 | =35 | /=883 |
within$$s | coverss$ss | overlapss$ss |
abuts$$S | startsss | ends$ss
ordered-dimension-pseudo-probability-pattern-op = <% | <=% | >=%|>%|=%| /=% |
within% | covers% | overlaps% |
abuts% | starts% | ends%

enumerated-dimension-pattern-op ::= is | enumerated-dimension-explicit-test-pattern-op
enumerated-dimension-explicit-test-pattern-op ::= is-eq| is-eql | is—equal | is—equalp
boolean-dimension-binary-pattern-op ::= eqv

boolean-dimension-unary-pattern-op ::= true | false

dimension-names ::= dimension-name | (dimension-name™)
pattern-values ::= pattern-value |

(pattern-value*) |

(pattern-value™ . pattern-value) |

(pattern-value™)

pattern-value ::= point | interval | element | set

interval ::= (start end) | (start . end) | # (start end)
Terms

point A number, infinity,or —infinity

start A number or —infinity

end A number or infinity

element An object

Description
The iteration is performed only once for each selected unit instance, even if the unit instance resides
on multiple space instances.

The pattern t matches all unit instances whose dimension values overlap the dimensional extent of
at least one space instance in space-instances. The pattern :all matches every unit instance on a

GBBopen 1.5 Reference
5.5 Instance Retrieval 473

do-instances-on-space-instances

space instance in space-instances, regardless of dimensional overlap.

Declared numeric (see page 143) and pseudo probability (see page 149) pattern operators are also
supported, for example: =&, =$&, =$, =53, =$$$,and =% and withing, within$s&, withins,
within$s, within$ss$, and within$.

See also
find-verbose (page 467)
use-marking (page 468)

warn-about-unusual-requests (page 469)
do-instances-of-class (page 470)
find-instances (page 483)
find-instances-of-class (page 488)
make-instances-of-class-vector (page 490)
map-instances-of-class (page 491)
map-instances-on-space-instances (page 493)

with-find-stats (page 498)
Declared numerics (page 143)
Examples

Remove all the hyp unit instances that reside on the (bb probable-hyps) space instance, deleting
those unit instances that do not reside on any other space instance:

(let ((space-instance
(find-space-instance-by-path ’ (bb probable-hyps))))
(do-instances-on-space—-instances (instance ’"hyp space-instance)
(if (>= (length (space—-instances-of instance) 1))
(remove-instance-from-space-instance
instance space-instance)
(delete-instance instance))))

Delete hyp unit instances that reside on the (bb probable-hyps) space instance that have a belief
value less than 0.5:

(do-instances-on-space-instances (instance ’"hyp ’ (bb probable-hyps)
:pattern ' (< belief .5))
(delete—-instance instance))

Note

Fixnum overlaps comparisons can result in bignum computations if the combined intervals of the
pattern and a candidate unit instance exceeds most-positive—fixnum.

do-instances-on-space-instances

GBBopen 1.5 Reference
474 5.5 Instance Retrieval

do-sorted-instances-of-class (var unit-classes-specifier predicate &key key) {tag | form}* [Macro]

Purpose
Iterate over each unit instance of the specified unit classes, in sorted order.

Package :gbbopen

Module :gbbopen-core

Arguments

var A variable symbol

unit-classes-specifier An extended unit-classes specification (see below)

predicate A function designator specifying a function object of two arguments that
returns a generalized boolean

key A function designator specifying a function object of one argument, or nil
(default is nil)

declaration A declare expression (not evaluated)

tag A go tag (not evaluated)

form A form

Detailed syntax

unit-classes-specifier ::= t | single-unit-class-specifier | (single-unit-class-specifier™)
single-unit-class-specifier ::= atomic-unit-class | (atomic-unit-class subclassing-specifier)
atomic-unit-class ::= unit-class | unit-class-name

subclassing-specifier ::= :plus-subclasses | :no-subclasses |+ | =

The shorthand + subclasses specifier is equivalent to :plus—subclasses and =to :no—-subclasses.

Description

The iteration is performed once for each unit instance of the specified unit classes, whether or not the
instances reside on any space instances.

See also
do-instances-of-class (page 470)
find-instances-of-class (page 488)

make-instances-of-class-vector (page 490)
map-instances-of-class (page 491)
map-instances-on-space-instances (page 493)
map-sorted-instances-of-class (page 496)

Example
Print a list of all hyp instance names, in ascending order:

(do-sorted-instances-of-class (instance 'hyp #’'< :key #’instance-name-of)
(print (instance-name-of instance)))

GBBopen 1.5 Reference
5.5 Instance Retrieval 475

filter-instances unit-instances pattern skey filter-before filter-after verbose [Function]
= matching-unit-instances

Purpose
Select matching unit instances from a list of unit instances based on a retrieval pattern.

Package :gbbopen

Module :gbbopen-core

Arguments

unit-instances A list of unit instances

pattern A retrieval pattern (see below)

filter-before A single-argument predicate to be applied before pattern-matching tests
oceur

filter-after A single-argument predicate to be applied after pattern-matching tests
occur

verbose A generalized boolean (default is *find-verbose*)

matching-unit-instances A proper list of unit instances

Returns

A newly consed list of unit instances that satisfy the specified pattern and predicate filters.

Detailed syntax
pattern ::= subpattern | t
subpattern ::= pattern-element |
(not subpattern) |
(and subpattern™) |
(or subpattern*)
pattern-element ::= (pattern-op dimension-names pattern-values option™) |
(boolean-dimension-unary-pattern-op dimension-names option™)
pattern-op ::= ordered-dimension-pattern-op |
enumerated-dimension-pattern-op |
boolean-dimension-binary-pattern-op

ordered-dimension-pattern-op ::= ordered-dimension-any-numeric-value-pattern-op |
ordered-dimension-explicit-type-pattern-op
ordered-dimension-explicit-type-pattern-op ::= ordered-dimension-fixnum-pattern-op |

ordered-dimension-short-float-pattern-op |
ordered-dimension-single-float-pattern-op |
ordered-dimension-double-float-pattern-op |
ordered-dimension-long-float-pattern-op |
ordered-dimension-pseudo-probability-pattern-op
ordered-dimension-any-numeric-value-pattern-op ::= < | <=|>=|>|=| /=]
within | covers |overlaps |
abuts | starts | ends
ordered-dimension-fixnum-pattern-op ::= <& | <=& | >=& | >& | =& | /=¢ |
withins | coverss | overlapsé |
abutsé& | startsé | endss

GBBopen 1.5 Reference
476 5.5 Instance Retrieval

filter-instances

ordered-dimension-short-float-pattern-op ::= <$& | <=$& | >=$& | >$& | =S& | /=S4 |
within$& | covers$s | overlaps$s |
abuts$s | starts$s | endsSs
ordered-dimension-single-float-pattern-op ::= <$ | <=$|>=$|>$|=5|/=$]
within$ | covers$ | overlapss$ |
abuts$ | starts$ | ends$
ordered-dimension-double-float-pattern-op ::= <$$ | <=5$$|>=$5| >$5 | =55 | /=55 |
withins | coversss | overlapsss |
abuts$$ | starts$s | endsss
ordered-dimension-long-float-pattern-op ::= <$$$ | <=$$$|>=55$| >$85 | =3$$ | /=883 |
within$$s | coverss$ss | overlapss$ss |
abuts$$S | starts$$s | ends$ss
ordered-dimension-pseudo-probability-pattern-op ::= <% | <=% | >=% | >% |=%| /=% |
within% | covers% | overlaps% |
abuts$% | starts% | ends%

enumerated-dimension-pattern-op ::= is | enumerated-dimension-explicit-test-pattern-op
enumerated-dimension-explicit-test-pattern-op ::= is-eq| is-eql | is—equal | is—equalp
boolean-dimension-binary-pattern-op ::= eqv

boolean-dimension-unary-pattern-op ::= true | false

dimension-names ::= dimension-name | (dimension-name™)
pattern-values ::= pattern-value |

(pattern-value®) |

(pattern-value® . pattern-value) |

#(pattern-va]ue"')

pattern-value ::= point | interval | element | set
interval ::= (start end) | (start . end) | # (start end)
Terms

point A number, infinity,or —infinity

start A number or -infinity

end A number or infinity

element An object

Description

If a unit instance appears more than once in unit-instances, it will be checked for selection—and
potentially included in the result—multiple times.

Declared numeric (see page 143) and pseudo probability (see page 149) pattern operators are also
supported, for example: =5, =$&, =$, =$3, =$5$, and =% and withing&, within$&, within,
within$s, within$ss$, and within$.

See also

find-verbose (page 467)
warn-about-unusual-requests (page 469)
find-all-instances-by-name (page 479)
find-instance-by-name (page 481)
find-instances (page 483)

map-instances-on-space-instances (page 493)

Declared numerics (page 143)

GBBopen 1.5 Reference
5.5 Instance Retrieval 477

filter-instances

Examples
> (filter-instances (supporting-hyps-of hyp) ’ (> belief .8))
(#<hyp 183 (1835 4791) 0.82 [0..35]>
#<hyp 233 (1835 4791) 0.89 [5..35]>
#<hyp 419 (1835 4791) 0.85 [5..35]>)
> (filter-instances (supporting-hyps-of hyp) ‘(within belief (.85
,infinity)))
(#<hyp 233 (1835 4791) 0.89 [5..351>
#<hyp 419 (1835 4791) 0.85 [5..35]>)
>

Note

Fixnum overlaps comparisons can result in bignum computations if the combined intervals of the
pattern and a candidate unit instance exceeds most-positive—fixnum.

filter-instances

GBBopen 1.5 Reference
478 5.5 Instance Retrieval

find-all-instances-by-name instance-name soptional unit-class-specifier [Function]
= unit-instances

Purpose
Retrieve unit instances with a given name.

Package :gbbopen

Module :gbbopen-core

Arguments

instance-name The instance name for the retrieval

unit-class-specifier =~ An extended unit-class specification (see below; default is t)
unit-instances A proper list of unit instances

Returns

A list of the unit instances with the specified name of the specified classes if any exist; nil otherwise.

Detailed syntax

unit-class-specifier ::= atomic-unit-class | (atomic-unit-class subclassing-specifier) | t
atomic-unit-class ::= unit-class | unit-class-name

subclassing-specifier ::= :plus-subclasses | :no-subclasses |+ | =

The shorthand + subclasses specifier is equivalent to :plus—-subclasses and =to :no-subclasses.

Description

The :instance-name-comparison—-test function (eq, eql, equal, or equalp) specified in
define-unit-class is used to match instance-name with the unit-instance’s instance name. If you are
using strings as the names of unit instances, you should specify equal (case sensitive) or equalp
(case insensitive) as the comparison function in the unit classes of those unit instances.

See also

define-unit-class (page 330)
filter-instances (page 476)
find-all-instances-by-name (page 479)
find-instance-by-name (page 481)
find-instances (page 483)
Examples

Find all unit instances (of any unit class) that are named 419:

> (find-instances-by-name 419 ’t)
(#<hyp 419 (1835 4791) 0.85 [5..35]>)
>

Find all unit instances (of any unit class) that are named 419:

> (find-instances-by-name 419 ’ (hyp :plus-subclasses))
(#<hyp 419 (1835 4791) 0.85 [5..351>)
>

GBBopen 1.5 Reference
5.5 Instance Retrieval 479

find-all-instances-by-name

or simply:

> (find-instances-by-name 419 '’ (hyp +))
(#<hyp 419 (1835 4791) 0.85 [5..351>)
>

find-all-instances-by-name

GBBopen 1.5 Reference
480 5.5 Instance Retrieval

find-instance-by-name instance-name soptional unit-class-specifier errorp [Function]
= unit-instance

Purpose
Retrieve a unit instance by its instance name.

Packqge :gbbopen
Module :gbbopen-core

Arguments
instance-name The instance name for the retrieval
unit-class-specifier =~ An extended unit-class specification (see below; default is t)

errorp A generalized boolean (default is nil)
unit-instance A unit instance or nil
Returns

The first unit instance found of the specified class(es) that has the specified instance-name if one
exists; nil otherwise.

Errors
If errorp is true, an error is signaled if no unit instance is found.

Detailed syntax

unit-class-specifier ::= atomic-unit-class | (atomic-unit-class subclassing-specifier) | t
atomic-unit-class ::= unit-class | unit-class-name

subclassing-specifier ::= :plus-subclasses | :no-subclasses |+ | =

The shorthand + subclasses specifier is equivalent to :plus-subclasses and = to :no-subclasses.

Description

The :instance-name-comparison—-test function (eq, eql, equal, or equalp) specified in
define-unit-class is used to match instance-name with the unit-instance’s instance name. When
strings are used as the names of unit instances, equal (case sensitive) or equalp (case insensitive)
should be specified as the comparison function in the unit classes of those unit instances.

See also

define-unit-class (page 330)
filter-instances (page 476)
find-instances (page 483)

find-all-instances-by-name (page 479)

Example

Find the hyp unit instance 419:
> (find-instance-by-name 419 ’hyp)
#<hyp 419 (1835 4791) 0.85 [5..35]>
> (find-instance-by-name 0 ’'hyp)
nil

GBBopen 1.5 Reference
5.5 Instance Retrieval 481

> (find-instance-by-name 0 'hyp ’t)
No unit instance named 0 of class hyp was found.
>

REPL Note

Find-instance-by-name can be invoked using the REPL command:

:fi instance-name l[unit-classes—specifier [errorp]l

which sets = to the found unit instance.

find-instance-by-name

482

find-instance-by-name

GBBopen 1.5 Reference
5.5 Instance Retrieval

find-instances unit-classes-specifier space-instances pattern [Function]
skey filter-before filter-after use-marking verbose = unit-instances

Purpose
Retrieve unit instances from space instances based on a retrieval pattern.

Package :gbbopen
Module :gbbopen-core
Arguments

unit-classes-specifier An extended unit-classes specification (see below)

space-instances A space instance, a list of space instances, a space-instance path regular
expression, or t (indicating all space instances)

pattern A retrieval pattern (see below)

filter-before A single-argument predicate to be applied before pattern-matching tests occur
filter-after A single-argument predicate to be applied after pattern-matching tests occur
use-marking A generalized boolean (default is *use-marking*)

verbose A generalized boolean (default is *find-verbose*)

unit-instances A proper list of unit instances

Returns

A newly consed list of unit instances specified by unit-class-specifier that reside on space-instances
and satisfy the specified pattern and any predicate filters.

Detailed syntax

unit-classes-specifier ::= t | single-unit-class-specifier | (single-unit-class-specifier™)
single-unit-class-specifier ::= atomic-unit-class | (atomic-unit-class subclassing-specifier)
atomic-unit-class ::= unit-class | unit-class-name

subclassing-specifier ::= :plus-subclasses | :no-subclasses |+ | =

The shorthand + subclasses specifier is equivalent to : plus—-subclasses and =to :no-subclasses.

pattern ::= subpattern |t | :all
subpattern ::= pattern-element |
(not subpattern) |
(and subpattern™) |
(or subpattern™)
pattern-element ::= (pattern-op dimension-names pattern-values option™) |
(boolean-dimension-unary-pattern-op dimension-names option™)
pattern-op ::= ordered-dimension-pattern-op |
enumerated-dimension-pattern-op |
boolean-dimension-binary-pattern-op
ordered-dimension-pattern-op ::= ordered-dimension-any-numeric-value-pattern-op |
ordered-dimension-explicit-type-pattern-op

GBBopen 1.5 Reference
5.5 Instance Retrieval 483

find-instances

ordered-dimension-explicit-type-pattern-op ::= ordered-dimension-fixnum-pattern-op |
ordered-dimension-short-float-pattern-op |
ordered-dimension-single-float-pattern-op |
ordered-dimension-double-float-pattern-op |
ordered-dimension-long-float-pattern-op |
ordered-dimension-pseudo-probability-pattern-op
ordered-dimension-any-numeric-value-pattern-op ::= < | <=|>=|>|=]| /=]
within| covers |overlaps |
abuts | starts | ends
ordered-dimension-fixnum-pattern-op ::= <& | <=& | >=s | >& | =& | /=& |
withins | coverss | overlapsé |
abutsé | startss | endss
ordered-dimension-short-float-pattern-op ::= <$& | <=$& | >=S& | >S$& | =S& | /=$& |
withinS$& | covers$s | overlaps$s |
abuts$s | starts$s | endsSs
ordered-dimension-single-float-pattern-op ::= <$ | <=$ | >=$|>$|=5| /=%
within$ | covers$ | overlapss$ |
abuts$ | starts$ | ends$
ordered-dimension-double-float-pattern-op ::= <$$ | <=5$$|>=85|>$$|=8$| /=55 |
within$$ | covers$s | overlaps$s$ |
abuts$$ | startss | endss$s
ordered-dimension-long-float-pattern-op ::= <$$$ | <=$$$|>=55%| >$85 | =35 | /=883 |
within$$s | coverss$ss | overlapss$ss |
abuts$$S | startsss | ends$ss
ordered-dimension-pseudo-probability-pattern-op = <% | <=% | >=%|>%|=%| /=% |
within% | covers% | overlaps% |
abuts% | starts% | ends%

enumerated-dimension-pattern-op ::= is | enumerated-dimension-explicit-test-pattern-op
enumerated-dimension-explicit-test-pattern-op ::= is-eq| is-eql | is—equal | is—equalp
boolean-dimension-binary-pattern-op ::= eqv

boolean-dimension-unary-pattern-op ::= true | false

dimension-names ::= dimension-name | (dimension-name™)
pattern-values ::= pattern-value |

(pattern-value*) |

(pattern—va]ue"' . pattern-value) |

(pattern-value™)

pattern-value ::= point | interval | element | set

interval ::= (start end) | (start . end) | # (start end)
Terms

point A number, infinity,or —infinity

start A number or -infinity

end A number or infinity

element An object

Description

The pattern t matches all unit instances whose dimension values overlap the dimensional extent of
at least one space instance in space-instances. The pattern :all matches every unit instance on a
space instance in space-instances, regardless of dimensional overlap. Use of find-instances with a t
or :all pattern in production code often indicates a missed opportunity to use a more efficient
do-instances-of-class, do-instances-on-space-instances, or do-sorted-instances-of-class

GBBopen 1.5 Reference
484 5.5 Instance Retrieval

find-instances

approach (or their map- variants).

Declared numeric (see page 143) and pseudo probability (see page 149) pattern operators are also
supported, for example: =&, =$&, =$, =53, =$$$,and =% and withing, within$s&, withins,
within$s, within$ss$, and within$.

See also

find-verbose (page 467)
use-marking (page 468)
warn-about-unusual-requests (page 469)
do-instances-of-class (page 470)
do-instances-on-space-instances (page 472)
do-sorted-instances-of-class (page 475)
filter-instances (page 476)
find-all-instances-by-name (page 479)
find-instance-by-name (page 481)
find-instances-of-class (page 488)
make-instances-of-class-vector (page 490)
map-instances-of-class (page 491)
map-instances-on-space-instances (page 493)
map-sorted-instances-of-class (page 496)
Declared numerics (page 143)
Examples

Here are some basic examples of finding hyp unit instances:

> (find-instances 'hyp (find-space-instance-by-path ’ (bb hyps))
"(and (= x 1835) (> belief .8)))

(#<hyp 319 (1835 8419) 0.91 [4..12]1>
#<hyp 331 (1835 8419) 0.88 [15..30]>
#<hyp 335 (1835 8419) 0.92 [15..35]>
#<hyp 183 (1835 4791) 0.82 [0..35]>
#<hyp 233 (1835 4791) 0.89 [5..35]>
#<hyp 419 (1835 4791) 0.85 [5..35]>)
> (find-instances "hyp ’ (bb hyps)

‘(and (= x 1835)
(> belief , (belief-of (find-instance-by-name 331 "hyp)))))
(#<hyp 319 (1835 8419) 0.91 [4..12]1>
#<hyp 335 (1835 8419) 0.92 [15..35]>
#<hyp 233 (1835 4791) 0.89 [5..35]>)
> (find-instances ' (hyp :no-subclasses) ’ (bb hyps)
"(=& (x y) (1835 8419)))
(#<hyp 319 (1835 8419) 0.91 [4..12]>
#<hyp 331 (1835 8419) 0.88 [15..30]>
#<hyp 335 (1835 8419) 0.92 [15..35]>)
> (find-instances "hyp ’ (bb hyps)
"(and (= x 1835) (within belief (.85 .9))))
(#<hyp 331 (1835 8419) 0.88 [15..30]>
#<hyp 233 (1835 4791) 0.89 [5..35]>
#<hyp 419 (1835 4791) 0.85 [5..35]>)

GBBopen 1.5 Reference
5.5 Instance Retrieval

485

> (find-instances "hyp ’ (bb hyps)

"(and (= x 1835) (overlaps velocity-range (0 10))))

(#<hyp 319 (1835 8419) 0.91 [4..12]1>

#<hyp 183 (1835 4791) 0.82 [0..35]>

#<hyp 233 (1835 4791) 0.89 [5..35]>

#<hyp 419 (1835 4791) 0.85 [5..35]>)
> (find-instances "hyp ’ (bb hyps)

" (and (= x 1835)
(#<hyp 335 (1835 8419
#<hyp 183 (1835 4791
#<hyp 233 (1835 4791
#<hyp 419 (1835 4791
> (find-instances ’'hy (bb hyps)

"(and (= x 1835) (covers velocity-range (0 10))))
(#<hyp 183 (1835 4791) 0.82 [0..35]>)
> (find-instances "hyp ’ (bb hyps)

"(and (= x 1835) (covers velocity-range (4 10))))
(#<hyp 319 (1835 8419) 0.91 [4..12]>
#<hyp 183 (1835 4791) 0.82 [0..35]>)
> (find-instances "hyp ’ (bb hyps)

"(and (= x 1835) (within velocity-range (0 10))))
nil
> (find-instances "hyp ’ (bb hyps)

"(and (= x 1835) (within wvelocity-range (0 20))))
(#<hyp 319 (1835 8419) 0.91 [4..12]>)
> (find-instances "hyp ’ (bb hyps)

" (and (= x 1835) (starts velocity-range 5)))
(#<hyp 233 (1835 4791) 0.89 [5..351>
#<hyp 419 (1835 4791) 0.85 [5..35]>)
> (find-instances "hyp ’ (bb hyps)

"(and (= x 1835) (ends velocity-range 30)))
(#<hyp 331 (1835 8419) 0.88 [15..30]>)
> (find-instances "hyp ’ (bb hyps)

"(and (= x 1835) (abuts velocity-range (5 30))))
(#<hyp 233 (1835 4791) 0.89 [5..35]1>
#<hyp 331 (1835 8419) 0.88 [15..30]1>
#<hyp 419 (1835 4791) 0.85 [5..35]>)

> (find-instances "hyp ’ (bb hyps)
" (is color :silver))

0.92 [15..35]>
0.82 [0..35]>
0.89 [5..35]>
0

)
)
)
)
P
(
)
)
)
) 0.85 [5..35]>)
P

(

(#<hyp 183 (1835 4791) 0.82 [0..35]>
#<hyp 233 (1835 4791) 0.89 [5..35]>
#<hyp 231 (1488 7405) 0.63 [0..8]>)
> (find-instances "hyp ’ (bb hyps)

" (is—-eq color :yellow))

(#<hyp 331 (1835 8419) 0.88 [15..301>
#<hyp 311 (896 388) 0.68 [0..6]1>)
>

Some examples finding a word unit instance:

> (find-instances ’'word ’ (words) ’ (is character #\s))
(#<word 1>)

486

overlaps velocity-range (35 40))))

find-instances

GBBopen 1.5 Reference
5.5 Instance Retrieval

find-instances

> (find-instances "word ’ (words) '’ (is character #\x))
nil
>

Find word unit instances with special characters in them:

> (find-instances ’'word ’ (words) '’ (overlaps char-code (0 64)))
(#<word 1>)
>

Note

Fixnum overlaps comparisons can result in bignum computations if the combined intervals of the
pattern and a candidate unit instance exceeds most-positive—fixnum.

find-instances

GBBopen 1.5 Reference
5.5 Instance Retrieval 487

find-instances-of-class unit-classes-specifier = unit-instances [Function]

Purpose
Return a list of all unit instances of the specified unit classes.

Package :gbbopen

Module :gbbopen-core

Arguments

unit-classes-specifier An extended unit-classes specification (see below)
unit-instances A proper list of unit instances

Returns

A newly consed list of all unit instances of the unit classes specified by unit-class-specifier, whether or
not they reside on any space instance.

Detailed syntax

unit-classes-specifier ::= t | single-unit-class-specifier | (single-unit-class-specifier™)
single-unit-class-specifier ::= atomic-unit-class | (atomic-unit-class subclassing-specifier)
atomic-unit-class ::= unit-class | unit-class-name

subclassing-specifier ::= :plus-subclasses | :no-subclasses |+ | =

The shorthand + subclasses specifier is equivalent to :plus—-subclasses and =to :no-subclasses.

See also

class-instances-count (page 329)
do-instances-of-class (page 470)
make-instances-of-class-vector (page 490)
map-instances-of-class (page 491)
map-instances-on-space-instances (page 493)
map-sorted-instances-of-class (page 496)
Example

Return the list of all hyp unit instances:

> (find-instances-of-class ’'hyp)

(#<hyp 233 (1835 4791) 0.89 [5..35]>
#<hyp 319 (1835 8419) 0.91 [4..12]>
#<hyp 419 (1835 4791) 0.85 [5..35]>
#<hyp 231 (1488 7405) 0.63 [0..8]>
#<hyp 311 (896 388) 0.68 [0..6]>

#<hyp 331 (1835 8419) 0.
#<hyp 183 (1835 4791) 0.
#<hyp 335 (1835 8419) 0.

GBBopen 1.5 Reference
488 5.5 Instance Retrieval

find-instances-of-class

Note

In general, do-instances-of-class or map-instances-of-class is preferred over operating on the list
created by find-instances-of-class.

find-instances-of-class

GBBopen 1.5 Reference
5.5 Instance Retrieval 489

make-instances-of-class-vector function skey adjustable = vector [Function]

Purpose
Return a (newly allocated) vector containing the unit instances of the specified unit classes.

Package :gbbopen
Module :gbbopen-core

Arguments
adjustable A generalized boolean (default is nil)
vector A vector (optionally adjustable) with a fill pointer

Returns
The vector containing the unit instances.

Detailed syntax

unit-classes-specifier ::= t | single-unit-class-specifier | (single-unit-class-specifier™)
single-unit-class-specifier ::= atomic-unit-class | (atomic-unit-class subclassing-specifier)
atomic-unit-class ::= unit-class | unit-class-name

subclassing-specifier ::= :plus-subclasses | :no-subclasses |+ | =

The shorthand + subclasses specifier is equivalent to : plus—-subclasses and = to :no-subclasses.

See also

do-instances-of-class (page 470)
find-instances-of-class (page 488)
map-instances-of-class (page 491)

map-sorted-instances-of-class (page 496)

Example
Create a vector containing all unit instances of the unit class hyp and subclasses of hyp:

(make-instances-of-class-vector ’ (hyp :plus-subclasses))

or simply:

(make-instances-of-class-vector ' (hyp +))

GBBopen 1.5 Reference
490 5.5 Instance Retrieval

map-instances-of-class function unit-classes-specifier [Function]

Purpose
Apply a function once to each unit instance of the specified unit classes.

Packqge :gbbopen
Module :gbbopen-core

Arguments
function A function designator specifying a function object of one argument

unit-classes-specifier An extended unit-classes specification (see below)

Detailed syntax

unit-classes-specifier ::= t | single-unit-class-specifier | (single-unit-class-specifier™)
single-unit-class-specifier ::= atomic-unit-class | (atomic-unit-class subclassing-specifier)
atomic-unit-class ::= unit-class | unit-class-name

subclassing-specifier ::= :plus-subclasses | :no-subclasses |+ | =

The shorthand + subclasses specifier is equivalent to :plus—subclasses and = to :no—-subclasses.

Description

The specified function is applied once to each unit instance of the specified unit classes, whether or
not the instances reside on any space instances.

See also

class-instances-count (page 329)
clear-space-instances (page 435)
do-instances-of-class (page 470)
find-instances-of-class (page 488)
make-instances-of-class-vector (page 490)

map-instances-on-space-instances (page 493)

map-sorted-instances-of-class (page 496)

Examples
Delete all unit instances of the unit class hyp:

(map—-instances-of-class #’delete-instance ’hyp)

Delete all unit instances of the unit class hyp and instances of subclasses of hyp:

14

(map-instances-of-class #’delete-instance '’ (hyp :plus-subclasses))

or simply:

(map-instances-of-class #’delete-instance '’ (hyp +))

GBBopen 1.5 Reference
5.5 Instance Retrieval 491

map-instances-of-class

Note

The consequences are unspecified if an attempt is made to add or delete a unit instance while
map-instances-of-class is in progress. There is one exception to this restriction: function may
delete its unit instance argument, provided that deletion does not trigger the deletion of any other
unit instances. For example, the following form intended to delete all space instances violates this
restriction:

(map-instances—-of-class

#’delete-space—-instance

" (standard-space—-instance :plus-subclasses))

because deletion of a space instance with children automatically deletes those child space instances.
The function delete-all-space-instances provides an efficient means of deleting all space instances
without violating this rule.

REPL Note

The equivalent of (map-instances-of-class ’'print arg) can be invoked using the
REPL command

:pic [unit-classes—specifier]

If arg is omitted, t is used as the default.

map-instances-of-class

GBBopen 1.5 Reference
492 5.5 Instance Retrieval

map-instances-on-space-instances function unit-classes-specifier space-instances [Function]
skey pattern filter-before filter-after use-marking
verbose

Purpose
Apply a function once to each unit instance on space instances, optionally selected by a
retrieval pattern.

Package :gbbopen

Module :gbbopen-core

Arguments

function A function designator specifying a function object of one argument

unit-classes-specifier An extended unit-classes specification (see below)

space-instances A space instance, a list of space instances, a space-instance path regular
expression, or t (indicating all space instances)

pattern A retrieval pattern (see below; default is t)

filter-before A single-argument predicate to be applied before pattern-matching tests occur

filter-after A single-argument predicate to be applied after pattern-matching tests occur

use-marking A generalized boolean (default is *use-marking*)

verbose A generalized boolean (default is *find-verbose*)

Detailed syntax

unit-classes-specifier ::= t | single-unit-class-specifier | (single-unit-class-specifier™)
single-unit-class-specifier ::= atomic-unit-class | (atomic-unit-class subclassing-specifier)
atomic-unit-class ::= unit-class | unit-class-name

subclassing-specifier ::= :plus-subclasses | :no-subclasses |+ | =

The shorthand + subclasses specifier is equivalent to : plus—-subclasses and =to :no-subclasses.

pattern ::= subpattern |t | :all
subpattern ::= pattern-element |
(not subpattern) |
(and subpattern™) |
(or subpattern™)
pattern-element ::= (pattern-op dimension-names pattern-values option™) |
(boolean-dimension-unary-pattern-op dimension-names option™)
pattern-op ::= ordered-dimension-pattern-op |
enumerated-dimension-pattern-op |
boolean-dimension-binary-pattern-op

ordered-dimension-pattern-op ::= ordered-dimension-any-numeric-value-pattern-op |
ordered-dimension-explicit-type-pattern-op
ordered-dimension-explicit-type-pattern-op ::= ordered-dimension-fixnum-pattern-op |

ordered-dimension-short-float-pattern-op |
ordered-dimension-single-float-pattern-op |
ordered-dimension-double-float-pattern-op |
ordered-dimension-long-float-pattern-op |
ordered-dimension-pseudo-probability-pattern-op

GBBopen 1.5 Reference
5.5 Instance Retrieval 493

map-instances-on-space-instances

ordered-dimension-any-numeric-value-pattern-op = < | <=|>=|>|=]| /=]
within | covers | overlaps |
abuts | starts | ends
ordered-dimension-fixnum-pattern-op ::= <& | <=& | >=s | >& | =& | /=& |
withins | coverss | overlapsé |
abutsé& | startsé | endss
ordered-dimension-short-float-pattern-op ::= <$& | <=$& | >=$& | >$& | =$& | /=5¢& |
withinS$& | covers$s | overlaps$a |
abuts$s | starts$s | endssSs
ordered-dimension-single-float-pattern-op ::= <$ | <=$|>=$|>$|=5| /=5
within$ | covers$ | overlapss$ |
abuts$ | starts$ | ends$
ordered-dimension-double-float-pattern-op ::= <$$ | <=5$$|>=85|>$5| =85 | /=55 |
within$$ | covers$s | overlaps$s$ |
abuts$$ | starts$$ | endss$s
ordered-dimension-long-float-pattern-op ::= <$$$ | <=$$$|>=55$| >$85 | =35 | /=885 |
within$$s | coverss$ss | overlapss$ss |
abuts$$S | startsss | ends$ss
ordered-dimension-pseudo-probability-pattern-op ::= <% | <=% | >=% | >% | =% | /=% |
within% | covers% | overlaps% |
abuts% | starts% | ends%

enumerated-dimension-pattern-op ::= is | enumerated-dimension-explicit-test-pattern-op
enumerated-dimension-explicit-test-pattern-op ::= is-eq| is-eql | is—equal | is—equalp
boolean-dimension-binary-pattern-op ::= eqv

boolean-dimension-unary-pattern-op ::= true | false

dimension-names ::= dimension-name | (dimension-name™)
pattern-values ::= pattern-value |

(pattern-value*) |

(pattern-value . pattern-value) |

(pattern-value™)

pattern-value ::= point | interval | element | set
interval ::= (start end) | (start . end) | # (start end)
Terms

point A number, infinity,or —infinity

start A number or -infinity

end A number or infinity

element An object

Description

The function will be applied only once to each unit instance, even if the unit instance resides on
multiple space instances.

The pattern t matches all unit instances whose dimension values overlap the dimensional extent of
at least one space instance in space-instances. The pattern :al1l matches every unit instance on a
space instance in space-instances, regardless of dimensional overlap.

Declared numeric (see page 143) and pseudo probability (see page 149) pattern operators are also
supported, for example: =5, =$5, =$, =53, =$3%,and =% and withing&, within$&, withing,
within$s, within$ss$, and within$.

See also

GBBopen 1.5 Reference
494 5.5 Instance Retrieval

map-instances-on-space-instances

find-verbose (page 467)
use-marking (page 468)
warn-about-unusual-requests (page 469)
do-instances-of-class (page 470)
do-instances-on-space-instances (page 472)
find-instances (page 483)
find-instances-of-class (page 488)
make-instances-of-class-vector (page 490)
map-instances-of-class (page 491)
map-sorted-instances-of-class (page 496)
with-find-stats (page 498)
Declared numerics (page 143)
Examples

Remove all the hyp unit instances that reside on the (bb probable-hyps) space instance, deleting
those unit instances that do not reside on any other space instance:

(let ((space—-instance
(find-space-instance-by-path ’ (bb probable-hyps))))
(map-instances-on-space-instances
#’ (lambda (instance)
(if (>= (length (space—-instances-of instance) 1))
(remove—-instance-from-space-instance instance
space—-instance)
(delete—-instance instance)))
"hyp
space-instance))

Delete hyp unit instances that reside on the (bb probable-hyps) space instance that have a belief
value less than 0.5:

(map-instances-on-space—instances
#’delete-instance
"hyp ’ (bb probable-hyps) :pattern ’ (< belief .5))

Note

Fixnum overlaps comparisons can result in bignum computations if the combined intervals of the
pattern and a candidate unit instance exceeds most-positive—fixnum.

map-instances-on-space-instances

GBBopen 1.5 Reference
5.5 Instance Retrieval 495

map-sorted-instances-of-class function unit-classes-specifier predicate &key key [Function]

Purpose
Apply a function once to each unit instance of the specified unit classes, in sorted order.

Package :gbbopen
Module :gbbopen-core

Arguments
function A function designator specifying a function object of one argument
unit-classes-specifier An extended unit-classes specification (see below)

predicate A function designator specifying a function object of two arguments that
returns a generalized boolean

key A function designator specifying a function object of one argument, or nil
(default is nil)

Detailed syntax

unit-classes-specifier ::= t | single-unit-class-specifier | (single-unit-class-specifier™)
single-unit-class-specifier ::= atomic-unit-class | (atomic-unit-class subclassing-specifier)
atomic-unit-class ::= unit-class | unit-class-name

subclassing-specifier ::= :plus-subclasses | :no-subclasses |+ | =

The shorthand + subclasses specifier is equivalent to : plus-subclasses and = to :no-subclasses.

Description

The specified function is applied once to each unit instance of the specified unit classes, whether or
not the instances reside on any space instances.

See also

do-sorted-instances-of-class (page 475)
make-instances-of-class-vector (page 490)
map-instances-of-class (page 491)

Example
Print a list of all hyp instance names, in ascending order:

(map-sorted—-instances—-of-class
#’ (lambda (instance)
(print (instance-name-of instance)))
"hyp #’< :key #’instance—-name-of)

GBBopen 1.5 Reference
496 5.5 Instance Retrieval

report-find-stats skey reset [Function]

Purpose

Display the retrieval statistics collected for find-instances and
map-instances-on-space-instances.

Package :gbbopen
Module :gbbopen-core

Arguments
reset A generalized boolean (default is nil)

Description
Report-find-stats displays the retrieval statistics within the scope of an active with-find-stats.

If reset is non-nil, the statistics are cleared after the report is displayed.

See also
with-find-stats (page 498)

Examples

> (with-find-stats ()
(scanner (find-instance-by-name 471 ’"hyp))
(report-find-stats)
(scanner (find-instance-by-name 632 "hyp)))
;; Find/Map Statistics:

- 20 find/map operations (0 using marking, 20 using hashing)
H 100 buckets scanned

¥ 9240 instances touched

B 9240 instances considered

HH 521 instances accepted

HH 0.16 seconds (0.80 msec/operation)

;; Find/Map Statistics:

HY 40 find/map operations (0 using marking, 40 using hashing)
H 200 buckets scanned

HH 18480 instances touched

HH 18480 instances considered

H 1042 instances accepted

i 0.32 seconds (0.80 msec/operation)

(#<hyp 319 (1835 8419) 0.91 [4..12]>
#<hyp 331 (1835 8419) 0.88 [15..30]1>)

> (report-find-stats)

;7 No find/map statistics are available.

>

GBBopen 1.5 Reference
5.5 Instance Retrieval 497

with-find-stats (skey initialize report) declaration™ form™ = result®

Purpose

Record and optionally display retrieval statistics for find-instances and
map-instances-on-space-instances.

Packqge :gbbopen
Module :gbbopen-core

Arguments

initialize A generalized boolean(default is t)

report A generalized boolean(default is t)

declaration A declare expression (not evaluated)

forms An implicit progn of forms to be evaluated
results The values returned by evaluating the last form

Returns
The values returned by evaluating the last form.

See also
find-instances (page 483)
map-instances-on-space-instances (page 493)
report-find-stats (page 497)
without-find-stats (page 499)
Example

[Macro]

Collect and display the retrieval statistics associated with running an application function scanner:

> (with-find-stats ()
(scanner (find-instance-by-name 471 ’"hyp)))
;; Find/Map Statistics:

H 20 find/map operations (0 using marking, 20 using hashing)
H 100 buckets scanned

¥ 9240 instances touched

HH 9240 instances considered

HH 521 instances accepted

¥ 0.16 seconds (0.80 msec/operation)

(#<hyp 419 (1835 4791) 0.85 [5..35]>
#<hyp 233 (1835 4791) 0.89 [5..35]>)
>

498

GBBopen 1.5 Reference
5.5 Instance Retrieval

without-find-stats declaration™ form™ = result™ [Macro]

Purpose
Disable the collecting of retrieval statistics while executing forms.

Packoge :gbbopen
Module :gbbopen-core

Arguments

declaration A declare expression (not evaluated)

forms An implicit progn of forms to be evaluated
results The values returned by evaluating the last form

Returns
The values returned by evaluating the last form.

See also
with-find-stats (page 498)

Example
Collect and display the retrieval statistics associated with running an application function scanner:
> (with-find-stats ()
(scanner (find-instance-by-name 471 ’"hyp))
(without-find-stats
(scanner (find-instance-by-name 632 ’'hyp))))
;; Find/Map Statistics:

- 20 find/map operations (0 using marking, 20 using hashing)
H 100 buckets scanned

¥ 9240 instances touched

B 9240 instances considered

HH 521 instances accepted

HH 0.16 seconds (0.80 msec/operation)

(#<hyp 319 (1835 8419) 0.91 [4..12]>
#<hyp 331 (1835 8419) 0.88 [15..30]>)
>

GBBopen 1.5 Reference
5.5 Instance Retrieval 499

5.6 Saving and Sending

This section contains : gbbopen-core entities that pertain to saving/sending and loading/reading
objects.

GBBopen 1.5 Reference
500 5.6 Saving and Sending

block-saved/sent-time

Purpose

Dynamically bound in with-reading-saved/sent-objects-block to the Universal Time when the

block was saved/sent.
Packqge :gbbopen-tools
Module :gbbopen-tools

Initial value Unbound

See also

block-saved/sent-value (page 502)
with-reading-saved/sent-objects-block (page 516)
with-saving/sending-block (page 518)

GBBopen 1.5 Reference
5.6 Saving and Sending

[Variable]

501

block-saved/sent-value

Purpose

[Variable]

Dynamically bound in with-reading-saved/sent-objects-block to the saved/sent value associated

with the block.
Packqge :gbbopen-tools
Module :gbbopen-tools

Initial value Unbound

See also

block-saved/sent-time (page 501)
with-reading-saved/sent-objects-block (page 516)
with-saving/sending-block (page 518)
502

GBBopen 1.5 Reference
5.6 Saving and Sending

print-object-for-sending [Variable]
Purpose

Controls print-object-for-saving/sending printing customization for sending versus for saving.
Package :gbbopen-tools

Module :gbbopen-tools

Value type A generalized boolean

Initial value ni1

See also

omitted-slots-for-saving/sending (page 510)
print-object-for-saving/sending (page 511)
print-slot-for-saving/sending (page 513)

Example
Send some hyp unit instances to another agent:
> (let ((xprint-object-for-sending* 't))
(with-saving/sending-block (stream :package '’ :my-app)
(let ((xsave/send-references-only* nil))

(do-instances-of-class (instance ’"hyp :plus-subclasses)
(print-object-for-saving/sending instance stream)))))
nil

GBBopen 1.5 Reference
5.6 Saving and Sending 503

save/send-references-only [Variable]

Purpose

Controls whether print-object-for-saving/sending prints references to instances or the instance
contents.

Packqge :gbbopen-tools
Module :gbbopen-tools
Value type A generalized boolean
Initial value True

See also

omitted-slots-for-saving/sending (page 510)
print-object-for-saving/sending (page 511)
print-slot-for-saving/sending (page 513)

Example
Send some hyp unit instances to another agent:
> (let ((*print-object-for-sending* "t))
(with-saving/sending-block (stream :package ' :my-app)
(let ((xsave/send-references-only* nil))

(do-instances-of-class (instance ’"hyp :plus-subclasses)
(print-object-for-saving/sending instance stream)))))
nil

GBBopen 1.5 Reference
504 5.6 Saving and Sending

initialize-saved/sent-instance instance slots slot-values missing-slot-names [Generic Function]
= instance

Purpose
Initializes the slots of instance when reading saved (or sent) values.

Method signatures

initialize-saved/sent-instance (instance standard-object) slots slot-values missing-slot-names =
instance

initialize-saved/sent-instance (instance standard-unit-instance) slots slot-values
missing-slot-names = instance

initialize-saved/sent-instance (instance standard-space—instance) slots slot-values
missing-slot-names = instance

Package :gbbopen-tools

Module :gbbopen-tools (the unit-instance and space-instance methods are added by
:gbbopen-core)

Arguments

instance A standard-object instance

slots Alist of effective-slot-definition objects
slot-values A list of values (corresponding to the slots in slots)

missing-slot-names A list of symbols naming slots and slot values that were saved/sent, but which
are no longer present in the class definition of instance.

Returns
The instance.

Description

Initialize-saved/sent-instance is called when loading a blackboard repository or journal or when
reading a network-streamer connection; it should not be called directly.

See also

load-blackboard-repository (page 507)
with-reading-saved/sent-objects-block (page 516)

Examples

Restore the binary value of slot song in unit instances of bird that was saved/sent as a Base64
portable string (see the companion encoding example on page 513):

(defmethod initialize-saved/sent-instance :after ((bird bird)
slots slot-values
missing-slot—-names)
(declare (ignore slots slot-values missing-slot-names))
(setf (song-of bird) (base64-decode (song-of bird))))

Transfer the slot value that was saved/sent as the slot named oc1d-slot to the slot named new-slot
in the current class definition of hyp:

GBBopen 1.5 Reference
5.6 Saving and Sending 505

initialize-saved/sent-instance

(defmethod initialize-saved/sent-instance :after ((hyp hyp)
slots slot-values
missing-slot—-names)
(declare (ignore missing-slot-names))
(let ((position (position 'old-slot slots
:key #’slot-definition-name
test #'eq)))
(setf (new-slot-of hyp) (nth position slot-values))))

initialize-saved/sent-instance

GBBopen 1.5 Reference
506 5.6 Saving and Sending

load-blackboard-repository pathname skey class-name-translations coalesce-strings [Function]
confirm-if-not-empty disable-events
estimated-peak-forward-references external-format
readtable read-eval retain-classes retain-event-functions
retain-event-printing
= pathname, saved-time, saved-value

Purpose
Load the blackboard repository (all unit instances and space instances) that has been saved to a file

previously by save-blackboard-repository.

Package :gbbopen

Module :gbbopen-core

Arguments

pathname A pathname designator
class-name-translations An association list (default is nil)
coalesce-strings A generalized boolean (default is nil)
confirm-if-not-empty A generalized boolean (default is true)
disable-events A generalized boolean (default is t)

estimated-peak-forward-references An integer (default is
rdefault-estimated-peak-forward-referencesx)

external-format An external-file-format designator (default is :default)

readtable A readtable (default is
xreading-saved/sent-objects-readtablex)

read-eval A generalized boolean (default is ni1l)

retain-classes An extended unit-classes specification (see below)

retain-event-functions A generalized boolean (default is nil)

retain-event-printing A generalized boolean (default is nil)

pathname A pathname

saved-time A Universal Time

saved-value An object

Returns

Three values: the pathname of the saved blackboard-repository data file, the time when the
blackboard-repository data file was saved, and the save value specified when the repository was
saved. If replacing a non-empty blackboard repository is not confirmed, ni1l is returned.

Events
If disable-events is ni1, the following events may be signaled (in order) as unit instances and
space instances are deleted prior to loading:

e delete-instance-event

e unlink-event

e instance-removed-from-space—-instance-event

e instance-deleted-event

GBBopen 1.5 Reference
5.6 Saving and Sending 507

load-blackboard-repository

Description

If pathname does not specify a file type, the type bb is added to it. Then,
(user—homedir-pathname) is used to supply any missing components to pathname.

The class-name-translations association list, if specified, should contain conses of the form:
(class—name . new—-class—name)
for any class translations that should occur during repository loading.

If coalesce-strings is true, loaded strings that are equal become shared (eq). This coalescing is
performed using a temporary hash table whose initial size can be specified by providing an integer
value for coalesce-strings. If a hash table is provided as the value for coalesce-strings, it is used in
place of the temporary hash table.

If confirm-if-not-empty is true, the user must confirm loading when the current blackboard repository
contains unit instances.

Unit instances that are referenced before they are defined are recorded using a temporary hash table
whose initial size can be specified by providing an integer value for
estimated-peak-forward-references.

See also

confirm-if-blackboard-repository-not-empty-p (page 436)
save-blackboard-repository (page 514)
with-reading-saved/sent-objects-block (page 516)
Examples

Load the GBBopen Tutorial Example application (without running it) and then load a blackboard
repository that was saved previously:

> :tutorial-example :noautorun

> (load-blackboard-repository "tutorial")

;7 35 temporarily forward-referenced instances (peak count)
#P" <homedir>/tutorial.bb"

3429178245

#<path 1>

>

Try loading the repository again:

> (load-blackboard-repository "tutorial")

The blackboard repository is not empty.

Continue anyway (the current contents will be deleted) [y or nl? n
nil

>

Define a new unit class, new-location, and then load the repository again, translating all
location unit instances to new—-location unit instances:

> (define-unit-class new-location (location) ())

#<standard-unit-class new-location>

> (load-blackboard-repository "tutorial"
:class—name-translations '’ ((location . new-location))
:confirm-if-not-empty nil)

;; 35 temporarily forward-referenced instances (peak count)

GBBopen 1.5 Reference
508 5.6 Saving and Sending

load-blackboard-repository

#P"<homedir>/tutorial.bb"

3429178245
#<path 1>
> :dsbb
Space Instance Contents
known-world 54 instances (53 new-location; 1 path)
Unit Class Instances
control-shell 1 *
ks 4 +
ksa—queue 2 +
new—location 53
ordered-ksa—-queue 1+
path
standard-space-instance 1

63 instances
>

load-blackboard-repository

GBBopen 1.5 Reference
5.6 Saving and Sending 509

omitted-slots-for-saving/sending instance = omitted-slot-names [Generic Function]

Purpose
Add slot names of a class to the list of slots that are not saved or sent.

Method signatures
omitted-slots-for-saving/sending (instance standard-space—instance) = omitted-slot-names

omitted-slots-for-saving/sending (instance standard-unit-instance) = omitted-slot-names
omitted-slots-for-saving/sending (instance t) = nil

Package :gbbopen-tools

Module :gbbopen-tools (the unit-instance and space-instance methods are added by
:gbbopen-core)

Arguments
instance An instance
omitted-slot-names A proper list

Returns
A list of omitted slot names for the class of instance.

See also

print-object-for-sending (page 503)
load-blackboard-repository (page 507)
print-object-for-saving/sending (page 511)
print-slot-for-saving/sending (page 513)
save-blackboard-repository (page 514)

Example

Specify that slot complex-unsaved-slot in my-unit-instance should be added to the list of slots
that are not saved or sent:

(defmethod omitted-slots—-for-saving/sending ((instance my-unit-instance))
(cons ’'complex-unsaved-slot (call-next-method)))

GBBopen 1.5 Reference
510 5.6 Saving and Sending

print-object-for-saving/sending object stream = object [Generic Function]

Purpose
Write the printed representation of object to stream when saving or sending.

Method signatures
print-object-for-saving/sending (object array) stream = object

print-object-for-saving/sending (object bit-vector) stream = object
print-object-for-saving/sending (object cons) stream = object
print-object-for-saving/sending (object function) stream = object
print-object-for-saving/sending (object generic—function) stream = object
print-object-for-saving/sending (object hash—-table) stream = object

print-object-for-saving/sending (object package) stream = object

(
(
(
(
(
(
(
print-object-for-saving/sending (object standard—-class) stream = object
print-object-for-saving/sending (object standard—-generic—function) stream = object
print-object-for-saving/sending (object standard-object) stream = object
print-object-for-saving/sending (object standard-unit—-instance) stream = object
print-object-for-saving/sending (object string) stream = object
print-object-for-saving/sending (object structure-object) stream = object
print-object-for-saving/sending (object vector) stream = object

(

print-object-for-saving/sending (object t) stream =- object
Packqge :gbbopen-tools
Module :gbbopen-tools (the unit-instance method is added by : gbbopen-core)

Arguments
object An object
stream A stream

Returns
The object.

Errors

A call to print-object-for-saving/sending was made outside the dynamic scope of a
with-saving/sending-block.

See also

print-object-for-sending (page 503)
omitted-slots-for-saving/sending (page 510)
print-slot-for-saving/sending (page 513)
save-blackboard-repository (page 514)
with-saving/sending-block (page 518)

GBBopen 1.5 Reference
5.6 Saving and Sending 511

print-object-for-saving/sending

Example
Define a method to save/send compiled-function references, when possible:

(defmethod print-object-for-saving/sending ((fn function)
stream)
(flet ((save/send-error ()
(let ((x*print-readably* nil))
(error "Unable to save/send ~s reliably." fn))))
(typecase fn
(compiled-function
(multiple-value-bind (lambda-expression closure-p name)
(function-lambda-expression fn)
(declare (ignore lambda-expression)
#+ (or cmu sbcl)
(ignore closure-p))
(when (or
;; CMUCL and SBCL always return that
;; closure-p is true, so we ignore their
;; closure-p value and risk that ‘fn’ might
;; be a non-trivial closure that can’t be
;; represented externally:
#-(or cmu sbcl)
closure-p
;; Implementations are free to always return
;5 nil as name or return an object that is
;; not valid for use as a name in function.
;; Fortunately, implementations usually
;7 provide a useful name value:
(not (symbolp name))
(not name))
(save/send-error))
(format stream "#’~s" name)))
(otherwise (save/send-error))))
fn)

Note that the above method is not without risk, but it will work in many situations.

print-object-for-saving/sending

GBBopen 1.5 Reference
512 5.6 Saving and Sending

print-slot-for-saving/sending instance slot-name stream [Generic Function]

Purpose
Write the printed representation of slot slot-name in object to stream when saving or sending.

Method signatures
print-slot-for-saving/sending (instance standard-object) slot-name stream

print-slot-for-saving/sending (instance standard-unit-instance) (slot-name (eql
gbbopen: :$%space—-instances%%) stream

Package :gbbopen-tools
Module :gbbopen-tools (the unit-instance method is added by : gbbopen-core)

Arguments

instance A standard-object instance
slot-name A non-nil, non-keyword symbol
stream A stream

Errors

A call to print-slot-for-saving/sending was made outside the dynamic scope of a
with-saving/sending-block.

See also

print-object-for-sending (page 503)
omitted-slots-for-saving/sending (page 510)
print-object-for-saving/sending (page 511)
print-slot-for-saving/sending (page 513)
save-blackboard-repository (page 514)

Example
Write the binary value of slot song in unit instances of bird as a Base64 portable string (see the
companion decoding example on page 505):

(defmethod print-slot-for-saving/sending ((bird bird) (slot—-name (eql
"song)) stream)
(print-object-for-saving/sending (base64—-encode (song-of bird)) stream))

GBBopen 1.5 Reference
5.6 Saving and Sending 513

save-blackboard-repository pathname skey external-format package [Function]
read-default-float-format value
= saved-repository-pathname

Purpose
Save the blackboard repository (all unit instances and space instances) to a file.

Packqge :gbbopen

Module :gbbopen-core

Arguments

pathname A pathname designator

external-format An external-file-format designator (default is :default)

package A package designator indicating the package to be used when saving and

loading the blackboard repository (default is : common-1isp)

read-default-float-format One of the atomic type specifiers short-float, single-float,
double-float, or long-float to be used when saving and loading the
blackboard repository (default is single—float)

value An object to be saved with the repository and returned when the repository
is loaded (default is ni1)

saved-repository-pathname A pathname

Returns
The pathname of the saved blackboard-repository data file.

Description

If pathname does not specify a file type, the type bb is added to it. Then,
(user—homedir-pathname) is used to supply any missing components to pathname.

The size of the blackboard-repository data file can be reduced by specifying a package containing the
majority of the symbols that are written to the file.

A with-saving/sending-block, with the package and read-default-float-format values, is
established when saving the blackboard repository.

See also

load-blackboard-repository (page 507)
omitted-slots-for-saving/sending (page 510)
print-object-for-saving/sending (page 511)
print-slot-for-saving/sending (page 513)
with-saving/sending-block (page 518)

Example
Run the GBBopen Tutorial Example application and then save the resulting blackboard repository:

> :tutorial-example

;7 No executable KSAs remain, exiting control shell

GBBopen 1.5 Reference
514 5.6 Saving and Sending

save-blackboard-repository

;7 Control shell 1 exited: 63 cycles completed
;; Run time: 0.04 seconds
;; Elapsed time: 0 seconds

:quiescence
> (save-blackboard-repository "tutorial" :package ’:tutorial)

#P"<homedir>/tutorial.bb"
>

Save the repository again, this time with a value to be returned when the repository is loaded:

> (save-blackboard-repository "tutorial"
:package ' :tutorial
:value (find-instance-by-name 1 ’'path))
#P" <homedir>/tutorial.bb"
>

save-blackboard-repository

GBBopen 1.5 Reference

5.6 Saving and Sending 515

with-reading-saved/sent-objects-block (stream skey class-name-translations [Macro]
coalesce-strings
estimated-peak-forward-references readtable
read-eval) form™ = result™

Purpose
Bind reader and GBBopen reading-saved/sent-objects control variables) to values that produce
standard GBBopen reading-saved/sent-objects behavior when evaluating forms.

Packqge :gbbopen-tools

Module :gbbopen-tools

Arguments

stream A stream

class-name-translations An association list (default is nil)
coalesce-strings A generalized boolean (default is nil)

estimated-peak-forward-references An integer (default is
rdefault-estimated-peak-forward-referencesx)

readtable A readtable (default is
rreading-saved/sent—objects—-readtablex)

read-eval A generalized boolean (default is nil)

forms An implicit progn of forms to be evaluated
results The values returned by evaluating the last form
Returns

The values returned by evaluating the last form.

Description

Within the dynamic extent of the body of forms, all Common Lisp reader control variables (including
any implementation-defined ones) and GBBopen reading-saved/sent-objects control variables are
bound to values that produce standard GBBopen reading-saved/sent-objects behavior. The function
load-blackboard-repository establishes a with-reading-saved/sent-objects-block when loading
the blackboard repository, and this macro can be used in constructing specialized
reading-saved/sent-objects operations.

The class-name-translations association list, if specified, should contain conses of the form:
(class—name . new-class—name)
for any class translations that should occur during reading.

If coalesce-strings is true, strings read within the dynamic extent of the body of forms that are equal
become shared (eq). This coalescing is performed using a temporary hash-table whose initial size can
be specified by providing an integer value for coalesce-strings. If a hash table is provided as the value
for coalesce-strings, it is used in place of the temporary hash table.

Unit instances that are referenced before they are defined are recorded using a temporary hash table
whose initial size can be specified by providing an integer value for
estimated-peak-forward-references.

GBBopen 1.5 Reference
516 5.6 Saving and Sending

with-reading-saved/sent-objects-block

See also

block-saved/sent-time (page
block-saved/sent-value (page
load-blackboard-repository (page
with-saving/sending-block (page

GBBopen 1.5 Reference
5.6 Saving and Sending

501)
502)
507)
518)

with-reading-saved/sent-objects-block

517

with-saving/sending-block (stream skey package read-default-float-format value) [Macro]
form™ = result™

Purpose

Bind printer and GBBopen save/send control variables) to values that produce standard GBBopen
save/send-object behavior when evaluating forms.

Package :gbbopen-tools

Module :gbbopen-tools

Arguments
stream A stream
package A package designator indicating the package to be used when

saving/sending and when loading/receiving (default is : common-1isp)

read-default-float-format One of the atomic type specifiers short-float, single-float,
double-float, or long-float (defaultis single-float)

value An object to be saved/sent and bound to *block-saved/sent-value* when
loading/receiving with with-reading-saved/sent-objects-block (default
isnil)

forms An implicit progn of forms to be evaluated

results The values returned by evaluating the last form

Returns

The values returned by evaluating the last form.

Description

Within the dynamic extent of the body of forms, all Common Lisp printer control variables (including
any implementation-defined ones) and GBBopen save/send control variables are bound to values that
produce standard GBBopen save/send-object behavior. The function save-blackboard-repository
establishes a with-saving/sending-block when saving the blackboard repository, and this macro
can be used in constructing specialized saving/sending operations.

See also
save-blackboard-repository (page 514)
print-object-for-saving/sending (page 511)

with-reading-saved/sent-objects-block (page 516)

GBBopen 1.5 Reference
518 5.6 Saving and Sending

5.7 Queue Management

The : queue module provides queue-management objects and operators.

GBBopen 1.5 Reference
5.7 Queue Management 519

clear-queue queue

Purpose

Quickly remove all elements from queue.

Method signatures
clear-queue (queue queue)

Packqge :gbbopen
Module :queue

Arguments
queue A GBBopen queue

See also
insert-on-queue (page 523)
make-queue (page 525)

remove-from-queue (page 535)

Example

Remove all pending KSAs that have been triggered but not yet executed:

(clear—queue pending-ksas)

520

[Generic Function]

GBBopen 1.5 Reference

5.7

Queue Management

do-queue (var queue) declaration™ {tag | form}*

Purpose

Iterate over each queue element on the specified queue.

Package :gbbopen
Module :queue

Arguments

var A variable symbol

queue A GBBopen queue

declaration A declare expression (not evaluated)

tag A go tag (not evaluated)
form A form
Description

The iteration over queue elements is performed in queue order (first to last).

See also

map-queue (page 526)
queue (page 532)
ordered-queue (page 530)

Example

Count the number of pending KSAs that were triggered by hyp:

> (let ((count 0))
(do—queue (ksa pending-ksas)

(when (memg hyp (collect-trigger-instances ksa))

(incf& count)))
count)

GBBopen 1.5 Reference
5.7 Queue Management

[Macro]

521

first-queue-element queue = queue-element

Purpose
Return the first queue element on queue.

Method signatures
first-queue-element (queue queue) = queue-element

Packqge :gbbopen
Module :queue

Arguments
queue A GBBopen queue
queue-element A GBBopen queue element object

Returns
The first queue element on queue.

See also

last-queue-element (page 524)
nth-queue-element (page 528)

Example

> (first—-queue-element pending-ksas)
#<ksa 2217>
>

522

[Generic Function]

GBBopen 1.5 Reference

5.7

Queue Management

insert-on-queue queue-element queue = queue-element [Generic Function]
Purpose
Insert a queue element on queue.

Method signatures
insert-on-queue (queue-element queue-element) (queue queue) = queue-element

insert-on-queue (queue-element queue—element) (queue ordered—queue) = queue-element
Package :gbbopen

Module :queue

Arguments

queue-element A GBBopen queue element object
queue A GBBopen queue

Returns

The supplied queue-element.

Description

If queue is an ordered queue, the position of queue-element in queue is based on the key and test
functions provided when the queue was created. If queue is a standard queue, queue-element is
inserted at the end of the queue.

See also
clear-queue (page 520)
make-queue (page 525)

remove-from-queue (page 535)

Example

> (insert-on—queue ksa pending-ksas)
#<ksa 2372>
>

GBBopen 1.5 Reference
5.7 Queue Management 523

last-queue-element queue = queue-element

Purpose
Return the last queue element on queue.

Method signatures
last-queue-element (queue queue) = queue-element

Packqge :gbbopen
Module :queue

Arguments
queue A GBBopen queue
queue-element A GBBopen queue element object

Returns
The last queue element on queue.

See also

first-queue-element (page 522)
nth-queue-element (page 528)

Example

> (last—-queue-element pending-ksas)
#<ksa 2372>
>

524

[Generic Function]

GBBopen 1.5 Reference

5.7

Queue Management

make-queue srest initargs = queue [Function]

Purpose
Make a GBBopen queue.

Package :gbbopen
Module :queue

Arguments
initargs An initialization argument list
queue A GBBopen queue

Returns
The newly created queue.

Errors
Use of an initialization argument that has not been declared as valid.

The supplied or generated instance name is identical to the instance name of an existing
unit instance of class.

See also
queue (page 532)
ksa-queue (page 610)

ordered-queue (page 530)
ordered-ksa-queue (page 613)

Example
> (setf pending-ksas (make—-queue :class ’ordered-ksa—-queue
:key #’'rating-of))
#<ordered-ksa-queue>
>

GBBopen 1.5 Reference
5.7 Queue Management 525

map-queue function queue [Generic Function]
Purpose
Apply a function to each queue element on the specified queue.

Method signatures
map-queue (function t) (queue queue)

Packqge :gbbopen
Module :queue

Arguments
function A function designator specifying a function object of one argument
queue A GBBopen queue

Description

The function is applied to the queue elements in queue order (first to last).
See also

do-queue (page 521)

queue (page 532)

ordered-queue (page 530)

Example
Count the number of pending KSAs that were triggered by hyp:

> (let ((count 0))
(map-queue #’ (lambda (ksa)
(when (memg hyp (collect-trigger-instances ksa))
(incf& count)))
pending-ksas)
count)
31

GBBopen 1.5 Reference
526 5.7 Queue Management

next-queue-element queue-element = next-queue-element

Purpose
Return the queue element that follows queue-element on a GBBopen queue.

Method signatures
next-queue-element (queue-element queue—-element) = next-queue-element

Packqge :gbbopen
Module :queue

Arguments
queue-element A GBBopen queue element object
next-queue-element A GBBopen queue element object

Returns
The queue element that follows queue-element.

See also

previous-queue-element (page 531)

Example

> (next—-queue-element ksa)
#<ksa 2166>
>

GBBopen 1.5 Reference
5.7 Queue Management

[Generic Function]

527

nth-queue-element n queue = queue-element [Generic Function]

Purpose
Return the nth queue element on queue.

Method signatures
nth-queue-element (n fixnum) (queue queue) = queue-element or nil

Packqge :gbbopen

Module :queue

Arguments
n A fixnum
queue A GBBopen queue

queue-element A GBBopen queue element objec

Returns
The specified queue element or nil if none exists.

Description

Returns the nth element in queue (zero origin) or nil if the queue is shorter than n. If n is negative,
return the nth element counting backward from the end of the queue (one origin).

See also

first-queue-element (page 522)
last-queue-element (page 524)

Examples
Return the first element on pending-ksas (equivalent to first-queue-element):
> (nth-queue-element 0 pending-ksas)

#<ksa 2217>
>

Return the last element on pending-ksas (equivalent to last-queue-element):

> (nth-queue-element -1 pending-ksas)
#<ksa 2372>
>

GBBopen 1.5 Reference
528 5.7 Queue Management

on-queue-p queue-element = queue or nil [Generic Function]

Purpose
Determine if queue-element resides on a queue by returning the queue or nil.

Method signatures
on-queue-p (queue-element queue—-element) = queue

Packqge :gbbopen
Module :queue

Arguments
queue-element A GBBopen queue element object
queue A GBBopen queue

Returns
The queue queue on which queue-element resides or nil if queue-element is not on a queue.

See also

queue-element (page 533)
show-queue (page 536)

Example
Return the queue on which ksa resides:
> (on—-queue-p ksa)

#<ordered-queue>
>

GBBopen 1.5 Reference
5.7 Queue Management 529

ordered-queue

Package :gbbopen

Module :queue

[Unit Class]

The unit class whose instances are used as the header of ordered (sorted) GBBopen queues.

Description

See also

clear-queue (page 520)
executed-ksas-of (page 602)
make-queue (page 525)
obviated-ksas-of (page 611)
on-queue-p (page 529)
ordered-ksa-queue (page 613)
queue (page 532)
queue-element (page 533)
show-queue (page 536)
530

GBBopen 1.5 Reference

5.7

Queue Management

previous-queue-element queue-element = previous-queue-element [Generic Function]

Purpose
Return the queue element that precedes queue-element on a GBBopen queue.

Method signatures
previous-queue-element (queue-element queue-element) = previous-queue-element

Packqge :gbbopen
Module :queue

Arguments
queue-element A GBBopen queue element object
previuos-queue-element A GBBopen queue element object

Returns
The queue element that precedes queue-element.

See also

next-queue-element (page 527)

Example

> (previous—queue-element ksa)
#<ksa 2166>
>

GBBopen 1.5 Reference
5.7 Queue Management 531

queue

Package :gbbopen
Module :queue

Description

The unit class whose instances are used as the header of GBBopen queues.

See also

clear-queue (page
ksa-queue (page
make-queue (page
ordered-queue (page
queue-element (page
show-queue (page

532

520)
610)
525)
530)
533)
536)

[Unit Class]

GBBopen 1.5 Reference

5.7

Queue Management

queue-element [Unit Class]

Package :gbbopen
Module :queue

Description
Objects that inherit from the unit class queue-element can be elements of GBBopen queues.

See also

on-queue-p (page 529)
ordered-queue (page 530)
queue (page 532)

Example
Define a KS activation class whose instances can be kept in a queue of pending KSAs:
(define-unit-class ksa (standard-unit-instance queue-element)
((rating
rinitform -1
:type rating)
))

GBBopen 1.5 Reference
5.7 Queue Management 533

queue-length queue soptional recount-p = integer [Generic Function]

Purpose
Return the length of queue.

Method signatures
queue-length (queue queue) soptional recount-p = integer

Packqge :gbbopen
Module :queue

Arguments

queue A GBBopen queue

recount-p If true, actually counts the individual queue elements (default is ni1)
integer An integer

Returns
The queue length.

Description

Normally queue-length simply returns a count that is maintained with the queue. Although highly
unlikely, this count could become inaccurate if queue-element insertion or deletion operations are
aborted in process. If recount-p is true, the elements are actually counted and then the count
maintained with the queue is updated and returned.

Examples
Return the number of KSAs in the queue pending-ksas:
> (queue-length pending-ksas)

896
>

Count and then return the actual number of KSAs in the queue pending-ksas:

> (queue-length pending-ksas ’'t)
896
>

GBBopen 1.5 Reference
534 5.7 Queue Management

remove-from-queue queue-element = queue-element

Purpose
Remove a queue element from its queue.

Method signatures
remove-from-queue (queue-element queue—-element) = queue-element

Packqge :gbbopen
Module :queue

Arguments
queue-element A GBBopen queue element object

Returns
The supplied queue-element.

See also

clear-queue (page 520)
insert-on-queue (page 523)

Example

> (remove—from—queue ksa)
#<ksa 2372>
>

GBBopen 1.5 Reference
5.7 Queue Management

[Generic Function]

535

show-queue queue skey start end show-element-function [Generic Function]
Purpose
Print the elements on queue.

Method signatures
show-queue (queue queue) skey start end show-element-function

Packqge :gbbopen

Module :queue

Arguments

queue A GBBopen queue

start An integer specifying the first queue element to be shown (default is 0)
end An integer specifying the last queue element to be shown or nil indicating

that the last queue element is to be shown (default is nil)

show-element-function A function designator specifying a function object of two arguments used to
print each queue element line (default is
#’ standard-show—-queue—element)

See also

clear-queue (page 520)
executed-ksas-of (page 602)
make-queue (page 525)
obviated-ksas-of (page 611)
ordered-ksa-queue (page 613)
ordered-queue (page 530)

queue (page 532)
queue-element (page 533)
on-queue-p (page 529)

pending-ksas-of (page 614)

Example
Show the control shell’s pending KSAs queue (early in a :tutorial-example run):
> (show-queue (pending-ksas-of (current-control-shell)))
0. #<ksa 7 random-walk-ks 100>

1. #<ksa 1 count-center—-locations-ks 90>
2. #<ksa 4 print-walk-ks 80> (show—queue pending-ksas :end 5)

GBBopen 1.5 Reference
536 5.7 Queue Management

6 GBBopen Extensions

GBBopen extension modules provide support for journaling and for network streaming between
GBBopen streamer nodes. Documentation for these entities is arranged into the following sections:
e streaming entities (Section 6.1)
e journaling entities (Section 6.2)
e networking-streaming entities (Section 6.3)

GBBopen 1.5 Reference
6 GBBopen Extensions 537

6.1 Streaming

The : st reaming module provides common entities used with journaling (Section 6.2) and network
streaming (Section 6.3).

The entities in this module are experimental and are subject to change.

GBBopen 1.5 Reference
538 6.1 Streaming

add-mirroring streamer [unit-class-or-instance-specifier]] skey slot-names paths [Function]

Purpose
Add mirroring of one or more unit classes.

Package :gbbopen

Module :streaming

Arguments

streamer A streamer

unit-class-or-instance-specifier An extended unit-class or instance specification (see below; default is
t)

slot-names or slot-name A slot-name or list of slot-names (default is t)

paths or path A space-instance path regular expression (default is ())

Detailed syntax
unit-class-or-instance-specifier ::= unit-instance | (unit-instance™) |
atomic-unit-class |
(atomic-unit-class subclassing-specifier) | t
atomic-unit-class ::= unit-class | unit-class-name
subclassing-specifier ::= :plus-subclasses | :no-subclasses |+ | =

The shorthand + subclasses specifier is equivalent to :plus—subclasses and =to :no—subclasses.

Description

The paths argument is either the symbol t (indicating all space instances) or a list representing a
regular expression where the following reserved symbols are interpreted as follows:

matches one occurrence in a space-instance path

matches zero or one occurrence in a space-instance path

matches one or more occurrences in a space-instance path

matches zero or more occurrences in a space-instance path

move to parent

> ok 4+ el

See also

remove-mirroring (page 560)

Example
Add full mirroring of hyp unit instances to streamer:

(add-mirroring streamer ’hyp)

Note
Unit-instance-specific mirroring is not yet implemented in GBBopen.

GBBopen 1.5 Reference
6.1 Streaming 539

add-to-broadcast-streamer streamer broadcast-streamer
Purpose

Add a journal or network streamer to a broadcast streamer.
Package :gbbopen

Module :streaming

Arguments
streamer A journal or network streamer.
broadcast-streamer A broadcast streamer

Errors
See also

make-broadcast-streamer (page 543)
remove-from-broadcast-streamer (page 546)

Example

[Function]

Add a network streamer to streamer node "you-too" to broadcast streamer broadcast-streamer:

> (add-to-broadcast—-streamer
(open—network-streamer "me" "you-too")
broadcast-streamer)

#<broadcast-streamer 2 constituents>

>

540

GBBopen 1.5 Reference
6.1 Streaming

clear-streamer-queue streamer [Function]

Purpose

Clear the contents of a streamer queue without writing its contents, emptying the queue for further
queueing.

Packqge :gbbopen
Module :streaming

Arguments
streamer A streamer

See also

with-queued-streaming (page 563)
write-streamer-queue (page 565)

Example
Clear streamer *streamerx:

(clear—-streamer—queue *streamer* :tag (get-universal-time))

GBBopen 1.5 Reference
6.1 Streaming 541

close-streamer streamer
Purpose
Close a journal or network streamer.

Method signatures
close-streamer (streamer journal-streamer)

close-streamer (streamer network-streamer)
Package :gbbopen
Module :streaming

Arguments
streamer A journal or network streamer

Errors

[Generic Function]

Threads (multiprocessing) is not supported on the Common Lisp implementation (only

network streamers require threads).

See also

define-streamer-node (page 573)
find-streamer-node (page 575)
make-journal-streamer (page 569)
open-network-streamer (page 578)

open-streamer-p (page 544)
stream-of (page 552)
Example

Close the network streamer x*streamer«:

(close—streamer xstreamerx)

542

GBBopen 1.5 Reference
6.1 Streaming

make-broadcast-streamer streamers = broadcast-streamer [Function]

Purpose
Create a broadcast streamer that can be used to write to multiple journal and network streamers.

Alternate syntax

make-broadcast-streamer s¢key package read-default-float-format external-format =
broadcast-streamer

Package :gbbopen

Module :streaming

Arguments
streamers A list of journal or network streamers.
package A package designator indicating the package to be used when writing to

and reading from the streamers associated with the broadcast-streamer
(default is : common-1isp)

read-default-float-format One of the atomic type specifiers short-float, single-float,
double—-float, or long-float to be used when to and reading from the
streamers associated with the broadcast-streamer (default is
single—-float)

external-format An external-file-format designator (default is :default)
broadcast-streamer A broadcast streamer

Errors

See also

add-to-broadcast-streamer (page 540)
remove-from-broadcast-streamer (page 546)

stream-of (page 552)

Examples

Create a broadcast streamer containing network streamers to streamer nodes "you" and "you-too":

> (make-broadcast-streamer

(open—network-streamer "me" "you")
(open—network-streamer "me" "you-too"))
#<broadcast-streamer 2 constituents>

>

Create a broadcast streamer with no constituents to be used with UTF-8 streamers:

> (make-broadcast—-streamer :external-format ’:utf-8)
#<broadcast-streamer 0 constituents>
>

GBBopen 1.5 Reference
6.1 Streaming 543

open-streamer-p streamer = boolean

Purpose
Determine if a journal or network streamer is open.

Package :gbbopen
Module :streaming

Arguments
streamer A journal or network streamer

Returns
True if the streamer is open; otherwise nil.

See also
close-streamer (page 542)
find-streamer-node (page 575)

make-journal-streamer (page 569)
open-network-streamer (page 578)
stream-of (page 552)

Example

Check if the network streamer *streamer~ is open:

> (open—-streamer—-p *streamerx)
t

544

[Function]

GBBopen 1.5 Reference
6.1 Streaming

read-queued-streaming-block tag string-stream [Generic Function]

Purpose
Reads a queued-streaming block.

Method signatures
read-queued-streaming-block (tag t) string-stream

Packqge :gbbopen
Module :streaming

Arguments
tag An object
string-stream An input string stream

Description

read-queued-streaming-block is called when a queued-streaming block is read; it should not be
called directly.

See also

with-queued-streaming (page 563)
write-streamer-queue (page 565)

Examples

Write a method that prints the time a queued-streaming block was started (recorded as the block’s
tag) when the block is read from a journal file or network-streamer connection:

(defmethod read-queued-streaming-block :around ((tag integer)
string-stream)
(declare (ignorable string-stream))
(format t "~&;; Reading ~a queued-streaming block...~%"
(full-date—-and-time tag))
(call-next-method)
(format t "~&;; Reading queued-streaming block completed.~%"))

Write a method that prints a notice when an empty queued-streaming block (tagged with the tag
:empty) has been read:

(defmethod read-queued-streaming-block :after ((tag (eqgl ’:empty))
string-stream)
(declare (ignorable string-stream))
(format t "~&;; An empty queued-streaming block was read.~%"))

GBBopen 1.5 Reference
6.1 Streaming 545

remove-from-broadcast-streamer streamer broadcast-streamer
Purpose

Remove a journal or network streamer from a broadcast streamer.
Package :gbbopen

Module :streaming

Arguments
streamer A journal or network streamer.
broadcast-streamer A broadcast streamer

Errors
See also

make-broadcast-streamer (page 543)
add-to-broadcast-streamer (page 540)

Example

[Function]

Remove the network streamer to streamer node "you-too" from broadcast streamer

broadcast—-streamer:

> (remove-from-broadcast-streamer
(open—network—-streamer "me" "you-too")
broadcast-streamer)

#<broadcast-streamer 1 constituent>

>

546

GBBopen 1.5 Reference
6.1 Streaming

stream-add-instance-to-space-instance unit-instance space-instance-or-path [Function]
streamer = instance

Purpose
Write adding a unit instance to a space instance to a streamer.

Package :gbbopen
Module :streaming

Arguments

unit-instance The added unit instance

space-instance-or-path The space instance or space-instance path to which the unit instance is added
streamer A streamer

Returns

The unit-instance.

See also

stream-delete-instance (page 548)
stream-instance (page 549)
stream-instances (page 550)
stream-instances-of-class (page 551)
stream-instances-on-space-instances (page 553)

stream-remove-instance-from-space-instance (page 558)

Examples

Stream to streamer *streamer~* the addition of a highly plausible hypothesis unit instance,
good-hyp, to the hyps space instance:

> (stream-add-instance-to-space—-instance

good-hyp (find-space-instance-by-path ’ (bb hyps)))
#<hyp 419 (1835 4791) 0.85 [5..35]>
>

or

> (stream—-add-instance-to-space-instance good-hyp ’ (bb hyps))
#<hyp 419 (1835 4791) 0.85 [5..35]>
>

GBBopen 1.5 Reference
6.1 Streaming 547

stream-delete-instance unit-instance streamer = instance

Purpose

Write deleting a unit instance (or space instance) to a streamer.

Package :gbbopen
Module :streaming

Arguments
unit-instance A unit instance (or space instance)
streamer A streamer

Returns
The unit-instance.

See also

stream-add-instance-to-space-instance (page
stream-instance (page
stream-instances (page
stream-instances-of-class (page
stream-instances-on-space-instances (page

stream-remove-instance-from-space-instance (page

Example

547)
549)
550)
551)
553)
558)

Stream deleting a hyp unit instance to streamer xstreamerx«:

> (stream-delete-instance (find-instance-by-name 419 ’hyp)

#<hyp 419 (1835 4791) 0.85 [5..35]>
>

548

[Function]

*streamerx)

GBBopen 1.5 Reference
6.1 Streaming

stream-instance unit-instance streamer = instance

Purpose

Write a unit instance (or space instance) to a streamer.
Package :gbbopen

Module :streaming

Arguments
unit-instance A unit instance (or space instance)
streamer A streamer

Returns
The unit-instance.

See also

stream-add-instance-to-space-instance (page
stream-delete-instance (page
stream-instances (page
stream-instances-of-class (page
stream-instances-on-space-instances (page

stream-remove-instance-from-space-instance (page

Example
Stream a hyp unit instance to streamer st reamerx:

> (stream-instance (find-instance-by-name 419 ’hyp)

#<hyp 419 (1835 4791) 0.85 [5..35]>
>

GBBopen 1.5 Reference
6.1 Streaming

547)
548)
550)
551)
553)
558)

*streamerx)

[Function]

549

stream-instances instances streamer = instances

Purpose

Write a list of unit instances (and space instances) to a streamer.
Package :gbbopen

Module :streaming

Arguments

instances A list of unit instances (and space instances)

streamer A streamer

Returns
The instances.

See also

stream-add-instance-to-space-instance

stream-delete-instance

stream-instance

stream-instances-of-class

stream-instances-on-space-instances

(page
(page
(page
(page
(page

stream-remove-instance-from-space-instance (page

Example

Stream the results of a blackboard retrieval to streamer *streamerx*:

> (stream—-instances

hyps))

Sstreamerx)
(#<hyp 319 (1835
#<hyp 331 (1835
#<hyp 335 (1835
#<hyp 183 (1835
#<hyp 233 (1835
#<hyp 419 (1835
>

550

' (and
8419) 0.91
8419) 0.88
8419) 0.92
4791) 0.82
4791) 0.89
4791) 0.85

— o/ — o/ /o

g o1 O b

(find-instances

(G2 NG I

(= x 1835)

L1271>
..301>
..351>
.35]1>
.35]1>
.35]>)

"hyp

(> belief

547)
548)
549)
551)
553)
558)

[Function]

(find-space-instance-by-path ’ (bb

GBBopen 1.5 Reference
6.1 Streaming

stream-instances-of-class unit-classes-specifier streamer [Function]

Purpose
Write all unit instances of the specified unit classes to a streamer.

Package :gbbopen
Module :streaming

Arguments
unit-classes-specifier An extended unit-classes specification (see below)
streamer A streamer

Detailed syntax

unit-classes-specifier ::= t | single-unit-class-specifier | (single-unit-class-specifier™)
single-unit-class-specifier ::= atomic-unit-class | (atomic-unit-class subclassing-specifier)
atomic-unit-class ::= unit-class | unit-class-name

subclassing-specifier ::= :plus-subclasses | :no-subclasses |+ | =

The shorthand + subclasses specifier is equivalent to :plus—-subclasses and = to :no-subclasses.

See also

stream-add-instance-to-space-instance (page 547)
stream-delete-instance (page 548)
stream-instance (page 549)
stream-instances (page 550)
stream-instances-on-space-instances (page 553)

stream-remove-instance-from-space-instance (page 558)

Example
Stream all unit instances of the unit class hyp to streamer xstreamer«:

(stream—-instances-of-class ’'hyp *streamerx)

GBBopen 1.5 Reference
6.1 Streaming 551

stream-of streamer = stream

Purpose

Return the stream associated with a journal or network streamer.

Package :gbbopen
Module :streaming

Arguments

streamer A journal or network streamer

Returns

The associated stream if the streamer is open; otherwise nil.

See also

close-streamer (page
find-streamer-node (page
make-journal-streamer (page
open-network-streamer (page
open-streamer-p (page
Example

Get the output file stream of the journal streamer *streamer«:

> (stream-of xstreamerx)

#<output file stream "<homedir>/tutorial.jnl">

552

542)
575)
569)
578)
544)

[Generic Reader]

GBBopen 1.5 Reference
6.1 Streaming

stream-instances-on-space-instances unit-classes-specifier space-instances streamer [Function]
skey pattern filter-before filter-after
use-marking verbose

Purpose
Write unit instances on space instances, optionally selected by a retrieval pattern, to a streamer.

Package :gbbopen
Module :streaming

Arguments

unit-classes-specifier An extended unit-classes specification (see below)

space-instances A space instance, a list of space instances, a space-instance path regular expression,
or t (indicating all space instances)

streamer A streamer

pattern A retrieval pattern (see below; default is t)

filter-before A single-argument predicate to be applied before pattern-matching tests occur

filter-after A single-argument predicate to be applied after pattern-matching tests occur

use-marking A generalized boolean (default is *use-marking*)

verbose A generalized boolean (default is *find-verbose*)

Detailed syntax

unit-classes-specifier ::= t | single-unit-class-specifier | (single-unit-class-specifier™)
single-unit-class-specifier ::= atomic-unit-class | (atomic-unit-class subclassing-specifier)
atomic-unit-class ::= unit-class | unit-class-name

subclassing-specifier ::= :plus-subclasses | :no-subclasses |+ | =

The shorthand + subclasses specifier is equivalent to : plus—-subclasses and =to :no-subclasses.

pattern ::= subpattern |t | :all
subpattern ::= pattern-element |
(not subpattern) |
(and subpattern™) |
(or subpattern™)
pattern-element ::= (pattern-op dimension-names pattern-values option™) |
(boolean-dimension-unary-pattern-op dimension-names option™)
pattern-op ::= ordered-dimension-pattern-op |
enumerated-dimension-pattern-op |
boolean-dimension-binary-pattern-op

ordered-dimension-pattern-op ::= ordered-dimension-any-numeric-value-pattern-op |
ordered-dimension-explicit-type-pattern-op
ordered-dimension-explicit-type-pattern-op ::= ordered-dimension-fixnum-pattern-op |

ordered-dimension-short-float-pattern-op |
ordered-dimension-single-float-pattern-op |
ordered-dimension-double-float-pattern-op |
ordered-dimension-long-float-pattern-op |
ordered-dimension-pseudo-probability-pattern-op

GBBopen 1.5 Reference
6.1 Streaming 553

stream-instances-on-space-instances

ordered-dimension-any-numeric-value-pattern-op = < | <=|>=|>|=]| /=]
within | covers | overlaps |
abuts | starts | ends
ordered-dimension-fixnum-pattern-op ::= <& | <=& | >=s | >& | =& | /=& |
withins | coverss | overlapsé |
abutsé& | startsé | endss
ordered-dimension-short-float-pattern-op ::= <$& | <=$& | >=$& | >$& | =$& | /=5¢& |
withinS$& | covers$s | overlaps$a |
abuts$s | starts$s | endssSs
ordered-dimension-single-float-pattern-op ::= <$ | <=$|>=$|>$|=5| /=5
within$ | covers$ | overlapss$ |
abuts$ | starts$ | ends$
ordered-dimension-double-float-pattern-op ::= <$$ | <=5$$|>=85|>$5| =85 | /=55 |
within$$ | covers$s | overlaps$s$ |
abuts$$ | starts$$ | endss$s
ordered-dimension-long-float-pattern-op ::= <$$$ | <=$$$|>=55$| >$85 | =35 | /=885 |
within$$s | coverss$ss | overlapss$ss |
abuts$$S | startsss | ends$ss
ordered-dimension-pseudo-probability-pattern-op ::= <% | <=% | >=% | >% | =% | /=% |
within% | covers% | overlaps% |
abuts% | starts% | ends%

enumerated-dimension-pattern-op ::= is | enumerated-dimension-explicit-test-pattern-op
enumerated-dimension-explicit-test-pattern-op ::= is-eq| is-eql | is—equal | is—equalp
boolean-dimension-binary-pattern-op ::= eqv

boolean-dimension-unary-pattern-op ::= true | false

dimension-names ::= dimension-name | (dimension-name™)
pattern-values ::= pattern-value |

(pattern-value*) |

(pattern-value . pattern-value) |

(pattern-value™)

pattern-value ::= point | interval | element | set
interval ::= (start end) | (start . end) | # (start end)
Terms

point A number, infinity,or —infinity

start A number or -infinity

end A number or infinity

element An object

Description

A unit instance will be streamed only once, even if the unit instance resides on multiple
space instances.

The pattern t matches all unit instances whose dimension values overlap the dimensional extent of
at least one space instance in space-instances. The pattern :al1l matches every unit instance on a
space instance in space-instances, regardless of dimensional overlap.

Declared numeric (see page 143) and pseudo probability (see page 149) pattern operators are also
supported, for example: =5, =$5, =$, =53, =$3%,and =% and withing&, within$&, withing,
within$s, within$ss$, and within$.

See also

GBBopen 1.5 Reference
554 6.1 Streaming

stream-instances-on-space-instances

stream-add-instance-to-space-instance (page
stream-delete-instance (page
stream-instance (page
stream-instances (page
stream-instances-of-class (page

stream-remove-instance-from-space-instance (page

Example

Stream all unit instances of the unit class hyp to streamer *streamerx that reside on the
(bb probable-hyps) space instance that have a belief value greater than 0.5:

(stream-instances—-on-space—-instances ’'hyp ’ (bb probable-hyps)

:pattern ’ (> belief .5))

Note

547)
548)
549)
550)
551)
558)

*streamerx

Fixnum overlaps comparisons can result in bignum computations if the combined intervals of the

pattern and a candidate unit instance exceeds most-positive—fixnum.

GBBopen 1.5 Reference
6.1 Streaming

stream-instances-on-space-instances

555

stream-link unit-instance slot other-unit-instances streamer = other-unit-instances [Function]

Purpose
Write links added between a unit instance and one or more unit instances to a streamer.

Package :gbbopen
Module :streaming

Arguments
unit-instance A unit instance (or space instance)
slot A non-nil, non-keyword symbol naming the link slot or a slot meta object

other-unit-instances A unit instance, a link-pointer object, or a list of unit instances and
link-pointer objects

streamer A streamer

Returns
The supplied other-unit-instances.

See also
stream-nonlink-slot-update (page 557)
stream-unlink (page 559)
Example

Stream adding a link of support-hyp to the supporting—hyps link slot of the hyp unit instance
unit-instance to streamer »streamerx:

> (stream-link unit-instance ’supporting-hyps support-hyp *streamerx)
#<hyp 231 (1488 7405) 0.63 [0..8]>
>

GBBopen 1.5 Reference
556 6.1 Streaming

stream-nonlink-slot-update unit-instance slot new-value streamer = new-value [Function]

Purpose
Write an update to the value of a non-link slot of unit instance (or space instance) to a streamer.

Package :gbbopen

Module :streaming

Arguments

unit-instance A unit instance (or space instance)

slot A non-nil, non-keyword symbol naming the slot or a slot meta object
new-value An object

streamer A streamer

Returns

The supplied new-value.

See also

stream-link (page 556)
stream-unlink (page 559)

Example
Stream a new belief value for a hyp unit instance to streamer xstreamer«:
> (stream—nonlink-slot-update (find-instance-by-name 419 ’'hyp)
"belief 0.88 xstreamerx)

0.88
>

GBBopen 1.5 Reference
6.1 Streaming 557

stream-remove-instance-from-space-instance unit-instance space-instance-or-path [Function]
streamer = instance

Purpose
Write removing a unit instance from a space instance to a streamer.

Package :gbbopen
Module :streaming

Arguments
unit-instance The removed unit instance

space-instance-or-path The space instance or space-instance path from which the unit instance is
removed

streamer A streamer

Returns

The unit-instance.

See also

stream-add-instance-to-space-instance (page 547)
stream-delete-instance (page 548)
stream-instance (page 549)
stream-instances (page 550)
stream-instances-of-class (page 551)
stream-instances-on-space-instances (page 553)
Examples

Examples

Stream to streamer *streamer~* the removal of an incorrect hypothesis unit instance,
incorrect-hyp, from the hyps space instance:

> (stream-remove-instance-from-space-instance
incorrect-hyp (find-space-instance-by-path ’ (bb hyps)))

#<hyp 311 (896 388) 0.68 [0..6]1>

>

or

> (stream-remove-instance-from-space-instance incorrect-hyp ’ (bb hyps))
#<hyp 311 (896 388) 0.68 [0..6]>
>

GBBopen 1.5 Reference
558 6.1 Streaming

stream-unlink unit-instance slot other-unit-instances streamer = other-unit-instances [Function]

Purpose
Write links removed between a unit instance and one or more unit instances to a streamer.

Package :gbbopen
Module :streaming

Arguments
unit-instance A unit instance (or space instance)
slot A non-nil, non-keyword symbol naming the link slot or a slot meta object

other-unit-instances A unit instance, a link-pointer object, or a list of unit instances and
link-pointer objects

streamer A streamer

Returns
The supplied other-unit-instances.

See also

stream-link (page 556)
stream-nonlink-slot-update (page 557)

Example
Stream removing a link of support—hyp from the supporting-hyps link slot of the hyp
unit instance unit-instance to streamer «streamer«:

> (stream-unlink unit-instance ’supporting-hyps support-hyp xstreamerx)

#<hyp 231 (1488 7405) 0.63 [0..8]>
>

GBBopen 1.5 Reference
6.1 Streaming 559

remove-mirroring streamer [unit-class-or-instance-specifier]] skey slot-names paths [Function]

Purpose
Remove mirroring of one or more unit classes.

Package :gbbopen

Module :streaming

Arguments

streamer A streamer

unit-class-or-instance-specifier An extended unit-class or instance specification (see below; default is
t)

slot-names or slot-name A slot-name or list of slot-names (default is t)

paths or path A space-instance path regular expression (default is ())

Detailed syntax

unit-class-or-instance-specifier ::= unit-instance | (unit-instance™) |
atomic-unit-class |
(atomic-unit-class subclassing-specifier) | t
atomic-unit-class ::= unit-class | unit-class-name
subclassing-specifier ::= :plus-subclasses | :no-subclasses |+ | =

The shorthand + subclasses specifier is equivalent to :plus—subclasses and =to :no—subclasses.

Description

The paths argument is either the symbol t (indicating all space instances) or a list representing a
regular expression where the following reserved symbols are interpreted as follows:

matches one occurrence in a space-instance path

matches zero or one occurrence in a space-instance path

matches one or more occurrences in a space-instance path

matches zero or more occurrences in a space-instance path

move to parent

> ok 4+ el

See also
stream-add-instance-to-space-instance (page 547)
add-mirroring (page 539)

stream-remove-instance-from-space-instance (page 558)

Example
Remove full mirroring of hyp unit instances to streamer:

(remove-mirroring streamer ’hyp)

Note
Unit-instance-specific mirroring is not yet implemented in GBBopen.

GBBopen 1.5 Reference
560 6.1 Streaming

with-mirroring-disabled (option™) declaration™ form™ = result™

Purpose
Disable mirroring during evaluation of forms.

Package :gbbopen
Module :streaming

Arguments

option No options are currently supported

declaration A declare expression (not evaluated)

forms An implicit progn of forms to be evaluated
results The values returned by evaluating the last form

Returns

The values returned by evaluating the last form.
See also

add-mirroring (page 539)
remove-mirroring (page 560)

with-mirroring-enabled (page 562)

Example
Create a hyp without mirroring:

> (with-mirroring-disabled ()
(make—-instance ’hyp
:location (list x y)
:classification ' (:car :truck)
:color ' :red
:belief .85
:velocity-range ' (5 35)
:supporting-hyps supporting-hyps))
#<hyp 419 (1835 4791) 0.85 [5..35]>
>

GBBopen 1.5 Reference
6.1 Streaming

[Macro]

561

with-mirroring-enabled (option™) declaration™ form™ = result® [Macro]

Purpose
Restore mirroring during evaluation of forms.

Package :gbbopen
Module :streaming

Arguments

option No options are currently supported

declaration A declare expression (not evaluated)

forms An implicit progn of forms to be evaluated
results The values returned by evaluating the last form

Returns

The values returned by evaluating the last form.
See also

add-mirroring (page 539)
remove-mirroring (page 560)

with-mirroring-disabled (page 561)

Example
Create a hyp without mirroring, then add supporting-hypothesis links with mirroring:

> (with-mirroring-disabled
(let ((hyp (make-instance ’'hyp
:location (list x y)
:classification ' (:car :truck)
:color ' :red
:belief .85
:velocity-range ' (5 35))))
(with-mirroring-enabled ()
(linkf (supporting-hyps-of hyp) supporting-hyps))
hyp))
#<hyp 419 (1835 4791) 0.85 [5..35]>
>

GBBopen 1.5 Reference
562 6.1 Streaming

with-queued-streaming (streamer [tag [write-empty-queue-p]l) form™ = result™ [Macro]

Purpose
Queue streaming during evaluation of forms.

Package :gbbopen

Module :streaming

Arguments

streamer A streamer

tag An object (default is ni1)

write-empty-queue-p A generalized boolean (default is nil)

forms An implicit progn of forms to be evaluated
results The values returned by evaluating the last form
Returns

The values returned by evaluating the last form.

Description

Instead of writing changes directly to a streamer’s journal file or network connection, the changes are
queued until the last form has been evaluated. Then the queued changes are written as a block that
is marked with the tag value. Queued streaming is thread-local (so different threads can have their
own open queues at the same time) and with-queued-streaming forms can be nested within a
single thread.

If the value of write-empty-queue-p is true, the streamer queue is written even if it is empty (and
read-queued-streaming-block will be called with the tag value when the empty queue is received
at a streamer node or read during journal loading).

See also

clear-streamer-queue (page 541)
read-queued-streaming-block (page 545)
write-streamer-queue (page 565)
Examples

Assuming that hyp unit instances are being mirrored to streamer st reamer*, queue the mirroring
of a created hyp tagged with the space instance (bb hyps):

> (with-queued-streaming (xstreamerx (find-space-instance-by-path ’ (bb
hyps)))
(make—-instance ’'hyp
:location (list x vy)
:classification ' (:car :truck)
:color ' :red
:belief .85
:velocity—-range ' (5 35)
:supporting-hyps supporting-hyps))
#<hyp 419 (1835 4791) 0.85 [5..35]>

GBBopen 1.5 Reference
6.1 Streaming 563

with-queued-streaming

Write an empty queue (with tag : empty) to streamer xstreamer«:

> (with-queued-streaming (xstreamerx ' :empty 't))
nil
>

with-queued-streaming

GBBopen 1.5 Reference
564 6.1 Streaming

write-streamer-queue streamer skey tag write-empty-queue-p

Purpose

Write the contents of a streamer queue, emptying it for further queueing.

Package :gbbopen

Module :streaming

Arguments
streamer A streamer
tag An object (default is nil)

write-empty-queue-p A generalized boolean (default is nil)

See also

clear-streamer-queue (page 541)
read-queued-streaming-block (page 545)
with-queued-streaming (page 563)
Examples

Write the contents of streamer *streamer«, using and retaining the existing tag and

write-empty-queue-p values associated with the queue:

(write—-streamer—-queue *streamerx)

[Function]

Write the contents of streamer st reamer«, using the existing tag and write-empty-queue-p values
associated with the queue (and retaining the write-empty-queue-p value), but establishing a new tab

value for the emptied queue:

(write—-streamer—-queue *streamer* :tag (get-universal-time))

GBBopen 1.5 Reference
6.1 Streaming

565

6.2 Journaling

Journal writing and reading is provided by the : st reaming module.

The entities in this module are experimental and are subject to change.

GBBopen 1.5 Reference
566 6.2 Journaling

load-journal pathname skey class-name-translations coalesce-strings disable-events [Function]
estimated-peak-forward-references external-format readtable read-eval
retain-classes retain-event-functions retain-event-printing
= pathname, saved-time, saved-value

Purpose
Load a journal file.

Package :gbbopen

Module :streaming

Arguments

pathname A pathname designator
class-name-translations An association list (default is ni1)
coalesce-strings A generalized boolean (default is nil)
disable-events A generalized boolean (default is t)

estimated-peak-forward-references An integer (default is
rdefault-estimated-peak-forward-referencesx)

external-format An external-file-format designator (default is : default)

readtable A readtable (default is
xreading-saved/sent-objects-readtablex)

read-eval A generalized boolean (default is ni1l)

retain-classes An extended unit-classes specification (see below)

retain-event-functions A generalized boolean (default is ni1l)

retain-event-printing A generalized boolean (default is nil)

pathname A pathname

saved-time A Universal Time

saved-value An object

Returns

Three values: the pathname of the journal file, the time when the journal was started, and the save
value specified when the journal was created.

Description

If pathname does not specify a file type, the type jnl is added to it. Then,
(user—-homedir-pathname) is used to supply any missing components to pathname.

The class-name-translations association list, if specified, should contain conses of the form:
(class—name . new-class—name)
for any class translations that should occur during repository loading.

If coalesce-strings is true, loaded strings that are equal become shared (eq). This coalescing is
performed using a temporary hash table whose initial size can be specified by providing an integer
value for coalesce-strings. If a hash table is provided as the value for coalesce-strings, it is used in
place of the temporary hash table.

Unit instances that are referenced before they are defined are recorded using a temporary hash table
whose initial size can be specified by providing an integer value for
estimated-peak-forward-references.

GBBopen 1.5 Reference
6.2 Journaling 567

load-journal

See also
make-journal-streamer (page 569)
save-blackboard-repository (page 514)

with-reading-saved/sent-objects-block (page 516)

Example

Load the GBBopen Tutorial Example application (without running it) and then load a journal that
was written previously:

> :tutorial-example :noautorun

> (load-journal "tutorial")

;7 35 temporarily forward-referenced instances (peak count)
#P" <homedir>/tutorial.jnl"

3429178245

#<path 1>

>

load-journal

GBBopen 1.5 Reference
568 6.2 Journaling

make-journal-streamer pathname skey external-format package [Function]
read-default-float-format value = journal-streamer

Purpose
Create a journal streamer to record to a file changes made to unit instances (and space instances).

Package :gbbopen

Module :streaming

Arguments

pathname A pathname designator

external-format An external-file-format designator (default is :default)

package A package designator indicating the package to be used when writing the

journal and when loading the journal file (default is : common-1isp)

read-default-float-format One of the atomic type specifiers short-float, single-float,
double-float, or long-float to be used when writing the journal and
loading the journal file (default is single—float)

value An object to be saved with the journal and returned when the journal file is
loaded (default is nil)

journal-streamer A journal streamer

Returns

The created journal streamer.

Description
If pathname does not specify a file type, the type jnl is added to it. Then,
(user—homedir-pathname) is used to supply any missing components to pathname.

The size of the journal file can be reduced by specifying a package containing the majority of the
symbols that are written to the file.

A with-saving/sending-block, with the package and read-default-float-format values, is
established when writing to the journal.

See also

load-journal (page 567)
omitted-slots-for-saving/sending (page 510)
stream-instance (page 549)
save-blackboard-repository (page 514)
with-saving/sending-block (page 518)
Example

Load the : st reaming module followed by the GBBopen Tutorial Example application (without
running it). Then write a journal file recording what occurred when taking a walk:

> :streaming

> :tutorial-example :noautorun

GBBopen 1.5 Reference
6.2 Journaling 569

make-journal-streamer

> (defparameter *streamerx
(make-journal-streamer "tutorial" :package ’:tutorial))
*streamerx
> xstreamerx
#<journal-streamer "<homedir>/tutorial.jnl">
> (add-mirroring *streamer* ’'standard-space-instance)
nil
> (add-mirroring *streamer* ’‘path)
nil
> (add-mirroring *xstreamerx ’location)
nil
> (take—-a-walk)
;; Control shell 1 started

;; Explicit :stop issued by KS print-walk-ks
;7 Control shell 1 exited: 41 cycles completed
;5 Run time: 0.01 seconds

;; Elapsed time: 0 seconds

:stop

>

make-journal-streamer

GBBopen 1.5 Reference
570 6.2 Journaling

6.3 Network Streaming

The :network-streaming module provides network streaming entities.

The entities in this module are experimental and are subject to change.

GBBopen 1.5 Reference
6.3 Network Streaming 571

default-network-stream-server-port [Variable]

Purpose
Specifies the default service port for the network stream server at a streamer node.

Package :gbbopen

Module :network-streaming

Value type An integer or a string specifying the service port
Initial value 19638

See also

define-streamer-node (page 573)

GBBopen 1.5 Reference
572 6.3 Network Streaming

define-streamer-node name skey host port documentation external-format package [Macrol]
read-default-float-format = streamer-node

Purpose
Define or redefine a streamer node.

Packqge :gbbopen

Module :network-streaming

Arguments

name An object naming the streamer node (not evaluated)

host A 32-bit internet address or a string specifying the remote host
(default "1localhost™)

port An integer or a string specifying the service port (default is
default-network-stream-server-port)

documentation A documentation string or nil (default is nil)

passphrase A string or nil (default is nil)

external-format An external-file-format designator (default is : default)

package A package designator indicating the package to be used when
establishing a streaming connection to node (default is
:common-1lisp)

read-default-float-format One of the atomic type specifiers short-float, single-float,

double-float, or long-float to be used when establishing a
streaming connection to streamer-node (default is single-float)

authorized-nodes Needed (default is :a11)
accepted-streamer-node-class Needed (default is accepted-streamer—-node)
accepted-streamer-node-initargs Needed (default is nil)

Returns

The newly defined or modified streamer node object.
See also

default-network-stream-server-port (page 572)
close-streamer (page 542)
find-streamer-node (page 575)
open-network-streamer (page 578)
open-streamer-p (page 544)
stream-of (page 552)
Example

Define a streamer node:

> (define-streamer-node "me"
thost "127.0.0.1"
:package ’ :gbbopen-user
:passphrase "Who goes there?"
rauthorized-nodes ' ("you"))

GBBopen 1.5 Reference
6.3 Network Streaming 573

define-streamer-node

#<streamer-node "me">
>

Note

Modifications to a streamer node object apply the next time that a network streamer is created for the
streamer node—the changes to not affect an established network streamer.

define-streamer-node

GBBopen 1.5 Reference
574 6.3 Network Streaming

find-streamer-node name = streamer-node or nil

Purpose
Return a streamer node given its name.

Package :gbbopen

Module :network-streaming

Arguments
name An object naming the streamer node.
errorp A generalized boolean (default is nil)

streamer-node A streamer node

Returns

The streamer node named name or nil, if none has been defined.

See also

define-streamer-node (page 573)
open-network-streamer (page 578)

Examples
Return the streamer node named "master":

> (find-streamer—-node "master")
#<streamer—node "master">
>

Find a non-existent streamer node:

> (find-streamer-node "missing")

nil

> (find-streamer-node "missing" ’t)
Error: No streamer node named "missing"
>>

GBBopen 1.5 Reference
6.3 Network Streaming

[Function]

575

kill-network-stream-server streamer-node = thread [Function]
Purpose

Create a connection-server thread that accepts network-stream connections.

Package :gbbopen

Module :network-streaming

Arguments
streamer-node A local streamer node or its name

Returns
True if the network-stream connection server was running when killed; ni1 otherwise.

Errors
Threads (multiprocessing) is not supported on the Common Lisp implementation.

See also
define-streamer-node (page 573)
find-streamer-node (page 575)
network-stream-server-running-p (page 577)
start-network-stream-server (page 579)
Example

Kill the network-stream connection server running at local streamer node "me":

> (kill-network-stream-server "me")
t
>

GBBopen 1.5 Reference
576 6.3 Network Streaming

network-stream-server-running-p streamer-node = boolean [Function]
Purpose

Determine if a network-stream connection server for a local streamer node is running.

Package :gbbopen

Module :network-streaming

Arguments
streamer-node A local streamer node or its name
boolean A generalized boolean

Returns
True if the network-stream connection server is alive; nil otherwise.

Errors
Threads (multiprocessing) is not supported on the Common Lisp implementation.

See also
define-streamer-node (page 573)
find-streamer-node (page 575)

kill-network-stream-server (page 576)
start-network-stream-server (page 579)

Example
See if the a network-stream connection server streamer node "me" is running:
> (network-stream-server-running-p "me")

t
>

GBBopen 1.5 Reference
6.3 Network Streaming 577

open-network-streamer streamer-node local-streamer-node & rest initargs [Function]
= network-streamer

Purpose

Return a connection to an external streamer node (from the specified local streamer node),
establishing a new connection if one does not already exist.

Package :gbbopen
Module :network-streaming

Arguments

streamer-node A non-local streamer node or its name
local-streamer-node A local streamer node or its name
initargs An initialization argument list
network-streamer A network streamer

Returns
An open network streamer (either existing or newly created—see below).

Description

If an open network streamer exists between streamer-node and local-streamer-node, that
network streamer is returned. Otherwise, a new connection to streamer-node is established and a
new network streamer is returned.

The class of the created network streamer is specified by the st reamer—class slot of streamer-node.

See also

close-streamer (page 542)
define-streamer-node (page 573)
find-streamer-node (page 575)
network-stream-server-running-p (page 577)
open-streamer-p (page 544)
stream-of (page 552)
Example

Return a network streamer connecting streamer node "me" and streamer node "you":

> (open-network-streamer "me" "you")
#<network-streamer 127.0.0.1:1969>
>

GBBopen 1.5 Reference
578 6.3 Network Streaming

start-network-stream-server streamer-node = thread [Function]

Purpose
Create a connection-server thread that accepts network-stream connections to a local streamer node.

Package :gbbopen
Module :network-streaming

Arguments
streamer-node A local streamer node or its name
thread A thread

Returns
The new connection-server thread thread.

Errors
Threads (multiprocessing) is not supported on the Common Lisp implementation.

See also
define-streamer-node (page 573)
find-streamer-node (page 575)

kill-network-stream-server (page 576)

Example
Start a network-stream connection server at local streamer node "me":

> (start—network—-stream-server "me")

#<thread Network Connection Server>
>

GBBopen 1.5 Reference
6.3 Network Streaming 579

580

7 Agenda Control Shell

The Agenda Shell module, : agenda-shell, provides a responsive, agenda-based control shell.

Note that the Agenda Shell requires that the idle-loop process has been started on CMUCL and that
multiprocessing has been started on LispWorks. (An error message when the Agenda Shell is started
will instruct you on what to do if this is not the case.)

GBBopen 1.5 Reference
7 Agenda Control Shell 581

http://www.cons.org/cmucl/
http://www.lispworks.com

abort-ks-execution <no arguments>

Purpose
Abort the currently executing KSA.

Package :agenda-shell
Module :agenda-shell

See also
exit-control-shell (page 604)

Example
Abort the currently executing KSA::

(abort-ks—-execution)

582

[Function]

GBBopen 1.5 Reference
7 Agenda Control Shell

activation-cycle-of ksa = cycle-number

Purpose

Returns the cycle number when a KSA was activated.

Method signatures
activation-cycle-of (ksa ksa) = cycle-number

Package :agenda-shell
Module :agenda-shell

Arguments
ksa A KSA
cycle-number An integer

Returns
The activation cycle number of ksa

Description

[Generic Reader]

This generic function accesses the value stored in the activation-cycle nonlink slot of ksa. This

value is maintained by the Agenda Shell and should not be changed.

See also
ksa (page 609)

Example
Return the activation cycle of ksa:
> (activation-cycle-of ksa)

1192
>

GBBopen 1.5 Reference
7 Agenda Control Shell

583

collect-trigger-instances source = trigger-instances [Generic Function]

Purpose
Return the trigger unit instances of a KSA, an event, or a list of KSAs or events.

Method signatures

collect-trigger-instances (cons cons) = trigger-instances

collect-trigger-instances (event single-instance—event) = trigger-instances

collect-trigger-instances

(
(
collect-trigger-instances (ksa ksa) = trigger-instances
(event multiple—-instance—-event) = trigger-instances
(

collect-trigger-instances (event non-instance—event) = nil

Package :agenda-shell
Module :agenda-shell

Arguments
source A KSA, event, or a list of KSAs or events
trigger-instances A proper list

Returns
The list of trigger unit instances

See also

sole-trigger-instance-of (page 620)

Example

Return the trigger unit instances of a KSA:
> (collect-trigger-instances ksa)
(#<hyp 419 (1835 4791) 0.85 [5..35]>

#<hyp 233 (1835 4791) 0.89 [5..35]>)
>

GBBopen 1.5 Reference
584 7 Agenda Control Shell

control-shell-running-p <no arguments> = boolean

Purpose
Determine if a control shell is running.

Package :agenda-shell
Module :agenda-shell

Arguments
boolean A generalized boolean

Returns
True if the control shell is running; nil otherwise.

See also

start-control-shell (page 622)
restart-control-shell (page 617)

Example

See if the control shell is running:
> (control-shell-running-p)
nil
>

GBBopen 1.5 Reference
7 Agenda Control Shell

[Function]

585

current-control-shell <no arguments> =- control-shell-or-nil [Function]

Purpose

Return the object representing the current control shell.
Package :agenda-shell

Module :agenda-shell

Arguments
control-shell-or-nil A control-shell objector nil

Returns

The object representing the current control shell (in the current thread), if one can be determined;
otherwise nil.

See also
control-shell-running-p (page 585)
start-control-shell (page 622)
Example

> (current-control-shell)
#<control-shell 1>
>

GBBopen 1.5 Reference
586 7 Agenda Control Shell

define-ks ks-name skey activation-predicate enabled execution-function ks-class ksa-class [Macro]
obviation-events obviation-predicate precondition-function rating
retrigger-events retrigger-function revalidation-predicate trigger-events = ks

Purpose
Define or redefine a knowledge source (KS).

Package :agenda-shell
Module :agenda-shell

Arguments
ks-name A symbol naming the KS (not evaluated)

activation-predicate A function designator specifying a function object of two arguments (the KS
unit instance and the event object) that returns a generalized boolean or nil
(default is ni1)

enabled A generalized boolean (default is t)

execution-function A function designator specifying a function object of one argument (the KSA
unit instance) or nil (defaultis nil)

ks-class A class or a symbol specifying a class (not evaluated)

ksa-class A class or a symbol specifying a class (not evaluated)

obviation-events An event-specification (see below, not evaluated)

obviation-predicate A function designator specifying a function object of two arguments (the KSA
unit instance and the event object) that returns a generalized boolean or nil
(defaultis nil)

precondition-function A function designator specifying a function object of two arguments (the KS
unit instance and the event object) or nil (default is nil)

rating A rating (default is 1)
retrigger-events An event-specification (see below, not evaluated)
retrigger-function A function designator specifying a function object of two arguments (the KSA

unit instance and the event object) or nil (default is nil)

revalidation-predicate A function designator specifying a function object of one argument (the KSA
unit instance) that returns a generalized boolean or nil (defaultis nil)

trigger-events An event-specification (see below, not evaluated)
ks AKS
Returns

The unit instance representing the KS

Detailed syntax
event-specification ::= (event-signature™)
event-signature ::= (event-class-specifier
[unit-class-or-instance-specifier
[{: slot-name slot-name} | {: slot-names slot-names} |
{:path path} | {:paths paths}]])

event-class-specifier ::= atomic-event-class | (atomic-event-class subeventing-specifier) | t

GBBopen 1.5 Reference
7 Agenda Control Shell 587

define-ks

atomic-event-class ::= event-class | event-class-name
subeventing-specifier ::= :plus-subevents | :no-subevents + | =

The shorthand + subevents specifier is equivalent to : plus—-subevents and = to :no—subevents.

unit-class-or-instance-specifier ::= unit-instance | (unit-instance™) |
atomic-unit-class |
(atomic-unit-class subclassing-specifier) | t
atomic-unit-class ::= unit-class | unit-class-name
subclassing-specifier ::= :plus-subclasses | :no-subclasses |+ | =

The shorthand + subclasses specifier is equivalent to : plus—subclasses and =to :no—-subclasses.

Description

A KS definition creates a unit instance of class ks-class which specifies how activations of the KS are
created and executed. The lifetime of each KS activation involves the following sequence:

e When an event matching one of the event specifications in trigger-events occurs and the KS is
enabled:

- the activation-predicate, if specified, is called and must return true for potential activation
to continue

- the precondition-function, if specified, is called and must return an integer rating for
potential activation to continue

e The KS is activated (a unit instance of class ksa-class is created) and given the rating returned
by the precondition-function or the constant rating value defined for the KS if no
precondition-function was specified. The current control-shell cycle number is stored in the
activation-cycle slot of the KSA unit instance.

e The KSA is placed on the queue of pending KSAs.

e If an event matching one of the event specifications in obviation-events occurs, the
obviation-predicate, if specified, is called. If it returns true, the pending KSA is removed from
the pending KSAs queue, the current control-shell cycle number is stored in the
obviation-cycle slot of the KSA, and the KSA is placed on the queue of obviated KSAs.

e If an event matching one of the event specifications in retrigger-events occurs, the
retrigger-function, if specified, is called. A retrigger-function is often used to change the
triggering context of the KSA or its rating.

e When the pending KSA is selected for execution (typically because has the highest rating above
the minimum-ksa-execution-rating currently in effect for the control shell), the
revalidation-predicate, if specified, is called. If the revalidation-predicate returns nil, the
pending KSA is removed from the pending KSAs queue, the current control-shell cycle number
is stored in the obviation-cycle slot of the KSA, and the KSAis placed on the queue of
obviated KSAs.

e The pending KSA is removed from the pending KSAs queue, the current control-shell cycle
number is stored in the execution—-cycle slot of the KSA unit instance, and the
execution-function is called.

e The executed KSA is placed on the queue of executed KSAs.

KS functions and predicates

The Agenda Shell provides a rich set of KS functions and predicates to manage the progression of
KSAs from initial triggering and activation through obviation or execution. A typical KS will only
require a subset of these functions and predicates.

An activation-predicate is a function that is called with two arguments, the unit instance
representing the KS and the object representing the triggering event. The activation-predicate should

GBBopen 1.5 Reference
588 7 Agenda Control Shell

define-ks

return a generalized boolean that indicates whether the KS should continue to be considered for
activation in response to the event. Typically, an activation-predicate is specified for a KS that does
not require a precondition-function rating computation, but that does require an
activate/don’t-activate decision.

A precondition-function is a function that is called with two arguments, the unit instance
representing the KS and the object representing the triggering event. The precondition-function
should return one of the following sets of values:

e nil indicating the KS is not to be activated in response to the event

e :stop (and, optionally, additional values to be returned by the control shell) indicating that the
control shell is to exit immediately

e An integer execution rating for the KSA (and, optionally, initialization arguments to be used
when creating the KSA unit instance)

An execution-function is a function that implements the KS. When an activation of the KS is
executed, this function is called with one argument, the unit instance representing the KSA. If the
execution function returns the value : stop (and, optionally, a additional values to be returned by the
control shell), the control shell will exit immediately.

An obviation-predicate is a function that is called with two arguments, the unit instance representing
the KSA and the object representing the obviation event. The obviation-predicate should return a
generalized boolean that indicates whether the KSA should be obviated.

A retrigger-function is a function that is called with two arguments, the unit instance representing
the KSA and the object representing the retrigger event. The retrigger-function can perform
whatever activities are needed in response to the event. Typically this involves augmenting the
triggering context of the KSA or changing its execution rating.

A revalidation-predicate is a function that is called with one argument, the unit instance
representing the KSA. The revalidation-predicate is called immediately before a KSA is executed and
should return a generalized boolean that indicates whether the KSA should be executed (if true) or
obviated (if false).

See also

define-ks-class (page 591)
define-ksa-class (page 595)
describe-ks (page 599)
ensure-ks (page 600)
ks (page 606)
ks-enabled-p (page 607)
standard-event-instance (page 411)
undefine-ks (page 627)
Examples

Define an initial KS that is triggered when the control shell is started:

(define—ks initial
:trigger—-events ((control-shell-started-event))
rexecution—-function #’initial-ks—function)

Define a KS named aggregate-hyps that is triggered whenever a hyp unit instance is created:

GBBopen 1.5 Reference
7 Agenda Control Shell 589

define-ks

(define-ks aggregate-hyps
:trigger-events ((instance-created-event hyp))
:precondition-function #’aggregate-hyps-precondition-function
:execution-function #’aggregate-hyps—-ks—-function)

Note
Unit-instance-specific KS triggers are not yet implemented in GBBopen.

define-ks

GBBopen 1.5 Reference
590 7 Agenda Control Shell

define-ks-class ks-class-name ({superclass-name}™) ({slot-specifier}*) {class-option}* [Macro]
= new-ks-class

Purpose
Define or redefine a ks class.

Package :agenda-shell
Module :agenda-shell

Arguments

ks-class-name A non-nil, non-keyword symbol that names the ks class

superclass-name A non-nil, non-keyword symbol that specifies a direct superclass of the ks class
ks-class-name

slot-specifiers See below

class-options See below

new-ks-class A new or modified ks class object

Returns
The newly defined or modified ks class object.

Errors

The specified superclass-names do not include at least one ks class name. This error is signaled on
class finalization.

Detailed syntax

(Syntax shown in gray is not supported in GBBopen Version 1.5, but will become available in a future release.)

slot-specifier ::= slot-name |
(nonlink-slot-name [[nonlink-slot-option]]) |
(link-slot-name [[link-slot-option]])
nonlink-slot-name ::= slot-name
link-slot-name ::= slot-name
link-slot-option ::= slot-option |
{: 1ink inverse-link-slot-specifier} |
{:singular boolean} |
{:sort-function function} |
{: sort-key function}
inverse-link-slot-specifier ::= (unit-class-name link-slot-name [: singular boolean]) |
:reflexive
nonlink-slot-option ::= slot-option |
{: reader reader-function-name}” |
{:writer writer-function-name}”
slot-option ::= {: accessor reader-function-name}™ |
{:allocation allocation-type} |
{:documentation string} |
{:initarg initarg-name}” |
{:initform form} |
{:type type-specifier}

GBBopen 1.5 Reference
7 Agenda Control Shell 591

define-ks-class

class-option ::= (:abstract boolean) |

(:default-initargs . initarg-list) |

(:dimensional-values dimension-value-specifier™) |

(:documentation string) |

(:estimated-instances integer) \

(:export-accessors boolean) |

(:export—-class—name boolean) |

(:export-slot-names direct-slots-specifier) |

(:generate—accessors direct-slots-specifier) |

(:generate—accessors—format {:prefix | :suffix} |

(:generate—accessors-prefix {string | symbol}) |

(:generate-accessors-suffix {string | symbol}) |

(:generate—initargs direct-slots-specifier) |

(:initial-space-instances initial-space-instance-specifier) |

(:instance—-name-comparison-test instance-name-comparison-test) |

(:metaclass class-name) |

(:retain {boolean | :propagate}) |
(:use—-global-instance-name—counter boolean)

initial-space-instance-specifier ::= {space-instance-path™ | function}

dimension-value-specifier ::= incomposite-dv-specifier | composite-dv-specifier

incomposite-dv-specifier ::= (dimension-name dimension-value-spec dimension-value-place)
composite-dv-specifier ::= (dimension-name dimension-value-specifier

composite-type dimension-value-place)
composite-type ::= :set | : sequence |

{:ascending-series ordering-dimension-name} |
{:descending-series ordering-dimension-name}
dimension-value-specifier ::= dimension-value-type |
(ordered-dimension-value-type [ordered-comparison-type]) |
(enumerated-dimension-value-type [enumerated-comparison-typel) |
(boolean-dimension-value-type [boolean-comparison-type])
dimension-value-type ::= ordered-dimension-value-type |
enumerated-dimension-value-type |
boolean-dimension-value-type

ordered-dimension-value-type ::= :point | :interval | :mixed
enumerated-dimension-value-type ::== :element

boolean-dimension-value-type ::= :boolean

ordered-comparison-type ::= number | fixnum | short-float | single-float |

double-float | long-float |

pseudo-probability
enumerated-comparison-type ::= eq | eql | equal | equalp
boolean-comparison-type ::= t
dimension-value-place ::= {slot-name [slot-namel} | {function [slot-namel}
direct-slots-specifier ::= nil | t | included-slot-name™ |

{t :exclude excluded-slot-name*}

The default ordered-comparison-type, if unspecified, is number. The default
enumerated-comparison-type, if unspecified, is eql. The default boolean-comparison-type is t.

A dimension-value-place with two slot-names is allowed only for an : interval dimension-value
specification.

Terms

GBBopen 1.5 Reference
592 7 Agenda Control Shell

define-ks-class

class-name A non-nil, non-keyword symbol that names a class
documentation A documentation string

initarg-list An initialization argument list

slot-name A non-nil, non-keyword symbol

instance-name-comparison-test One of the four standardized hash table test function names: eq,
eql, equal, or equalp (default for classes of metaclass
standard-unit-class is eql)

Description

A dimension-value-place with two slot-names can be specified only for : interval dimension-value
types.

Each superclass-name argument specifies a direct superclass of the new class. If the superclass list is
empty, then the direct superclass defaults to the single class ks.

The :metaclass class-name class option, if specified, must be a subclass of standard-unit-class.
The default metaclass value is also standard-unit-class.

Inheritance of class options

The set of dimensional-values for a unit class is the union of the sets specified in the
dimensional-values options of the class and its superclasses. When more than one dimension-value
specification is supplied for a given dimension, the one supplied by the most specific class is used.

The effective initial-space-instances value for a unit class is the value specified in the definition of the
most specific unit class. (No additive inheritance of initial-space-instances is performed.) If no
definitions specify an initial-space-instances value, nil is used.

The instance-name-comparison-test value is not inherited. If no value is specified in the unit-class
definition, the default initialization value associated with the metaclass is used.

If a retain value is not specified, a value of : propagate is used as the default if any parent
unit classes have a :propagate retention value; otherwise nil is used as the default value.

The use-global-instance-name-counter value is not inherited. If no value is specified in the unit-class
definition, the default initialization value associated with the metaclass is used.

See also

define-ks (page 587)
delete-blackboard-repository (page 442)
standard-unit-class (page 369)
with-generate-accessors-format (page 136)

Examples

Define a ks class, ks-with-1lock, that has an additional slot containing a lock that can be used to
synchronize operations on each defined KS of that class.

> (define—-ks-class ks—-with-lock ()

((lock :initform (make-lock :name "KS Lock"))))
#<standard-unit-class ks-with-lock>
>

Do the same, but with a mixin class:

GBBopen 1.5 Reference
7 Agenda Control Shell 593

define-ks-class

> (define—-unit-class ks—-lock—-mixin ()
((lock :initform (make-lock :name "KS Lock"))))
f<standard-unit-class ks—lock-mixin>
> (define-ks-class ks-with-lock (ks ks—-lock-mixin)
())

#<standard-unit-class ks—-with-lock>
>

define-ks-class

GBBopen 1.5 Reference
594 7 Agenda Control Shell

define-ksa-class ksa-class-name ({superclass-name}”) ({slot-specifier}”) {class-option}* [Macro]
= new-ksa-class

Purpose
Define or redefine a ksa class.

Package :agenda-shell
Module :agenda-shell

Arguments
ksa-class-name A non-nil, non-keyword symbol that names the ksa class

superclass-name A non-nil, non-keyword symbol that specifies a direct superclass of the ksa class
ksa-class-name

slot-specifiers See below
class-options See below

new-ksa-class A new or modified ksa class object

Returns
The newly defined or modified ksa class object.

Errors

The specified superclass-names do not include at least one ksa class name. This error is signaled on
class finalization.

Detailed syntax
slot-specifier ::= slot-name |
(nonlink-slot-name [[nonlink-slot-option]]) |
(link-slot-name [[link-slot-option]])

nonlink-slot-name ::= slot-name
link-slot-name ::= slot-name
link-slot-option ::= slot-option |

{: 1ink inverse-link-slot-specifier} |

{:singular boolean} |

{:sort-function function} |

{: sort-key function}
inverse-link-slot-specifier ::= (unit-class-name link-slot-name [: singular boolean]) |

:reflexive
nonlink-slot-option ::= slot-option |
{: reader reader-function-name}” |
{:writer writer-function-name}”

slot-option ::= {: accessor reader-function-name}™ |
{:allocation allocation-type} |
{:documentation string} |
{:initarg initarg-name}” |
{:initform form} |
{:type type-specifier}

GBBopen 1.5 Reference
7 Agenda Control Shell 595

define-ksa-class

class-option ::= (:abstract boolean) |

(:default-initargs . initarg-list) |

(:dimensional-values dimension-value-specifier™) |

(:documentation string) |

(:estimated-instances integer) \

(:export-accessors boolean) |

(:export—-class—name boolean) |

(:export-slot-names direct-slots-specifier) |

(:generate—accessors direct-slots-specifier) |

(:generate—accessors—format {:prefix | :suffix} |

(:generate—accessors-prefix {string | symbol}) |

(:generate-accessors-suffix {string | symbol}) |

(:generate—initargs direct-slots-specifier) |

(:initial-space-instances initial-space-instance-specifier) |

(:instance—-name-comparison-test instance-name-comparison-test) |

(:metaclass class-name) |

(:retain {boolean | :propagate}) |
(:use—-global-instance-name—counter boolean)

initial-space-instance-specifier ::= {space-instance-path™ | function}

dimension-value-specifier ::= incomposite-dv-specifier | composite-dv-specifier

incomposite-dv-specifier ::= (dimension-name dimension-value-spec dimension-value-place)
composite-dv-specifier ::= (dimension-name dimension-value-specifier

composite-type dimension-value-place)
composite-type ::= :set | : sequence |

{:ascending-series ordering-dimension-name} |
{:descending-series ordering-dimension-name}
dimension-value-specifier ::= dimension-value-type |
(ordered-dimension-value-type [ordered-comparison-type]) |
(enumerated-dimension-value-type [enumerated-comparison-typel) |
(boolean-dimension-value-type [boolean-comparison-type])
dimension-value-type ::= ordered-dimension-value-type |
enumerated-dimension-value-type |
boolean-dimension-value-type

ordered-dimension-value-type ::= :point | :interval | :mixed
enumerated-dimension-value-type ::== :element

boolean-dimension-value-type ::= :boolean

ordered-comparison-type ::= number | fixnum | short-float | single-float |

double-float | long-float |

pseudo-probability
enumerated-comparison-type ::= eq | eql | equal | equalp
boolean-comparison-type ::= t
dimension-value-place ::= {slot-name [slot-namel} | {function [slot-namel}
direct-slots-specifier ::= nil | t | included-slot-name™ |

{t :exclude excluded-slot-name*}

The default ordered-comparison-type, if unspecified, is number. The default
enumerated-comparison-type, if unspecified, is eql. The default boolean-comparison-type is t.

A dimension-value-place with two slot-names is allowed only for an : interval dimension-value
specification.

Terms

GBBopen 1.5 Reference
596 7 Agenda Control Shell

define-ksa-class

class-name A non-nil, non-keyword symbol that names a class
documentation A documentation string

initarg-list An initialization argument list

slot-name A non-nil, non-keyword symbol

instance-name-comparison-test One of the four standardized hash table test function names: eq,
eql, equal, or equalp (default for classes of metaclass
standard-unit-class is eql)

Description

A dimension-value-place with two slot-names can be specified only for : interval dimension-value
types.

Each superclass-name argument specifies a direct superclass of the new class. If the superclass list is
empty, then the direct superclass defaults to the single class ksa.

The :metaclass class-name class option, if specified, must be a subclass of standard-ksa-class.
The default metaclass value is also standard-ksa-class.

Inheritance of class options

The set of dimensional-values for a unit class is the union of the sets specified in the
dimensional-values options of the class and its superclasses. When more than one dimension-value
specification is supplied for a given dimension, the one supplied by the most specific class is used.

The effective initial-space-instances value for a unit class is the value specified in the definition of the
most specific unit class. (No additive inheritance of initial-space-instances is performed.) If no
definitions specify an initial-space-instances value, nil is used.

The instance-name-comparison-test value is not inherited. If no value is specified in the unit-class
definition, the default initialization value associated with the metaclass is used.

If a retain value is not specified, a value of : propagate is used as the default if any parent
unit classes have a :propagate retention value; otherwise nil is used as the default value.

The use-global-instance-name-counter value is not inherited. If no value is specified in the unit-class
definition, the default initialization value associated with the metaclass is used.

See also

define-ks (page 587)
delete-blackboard-repository (page 442)
standard-ksa-class (page 621)
with-generate-accessors-format (page 136)

Examples

Define a ksa class, ksa—with-1lock, that has an additional slot containing a lock that can be used to
synchronize operations on each KSA of that class.

> (define—-ksa-class ksa-with-lock ()

((lock :initform (make—-lock :name "KSA Lock"))))
#<standard-ksa-class ksa-with-lock>
>

Do the same, but with a mixin class:

GBBopen 1.5 Reference
7 Agenda Control Shell 597

define-ksa-class

> (define—-unit-class ksa-lock—-mixin ()
((lock :initform (make—-lock :name "KSA Lock"))))
#<standard-unit-class ksa-lock-mixin>
> (define-ksa-class ksa-with-lock (ksa ksa-lock-mixin)
())

#<standard-ksa-class ksa-with-lock>
>

define-ksa-class

GBBopen 1.5 Reference
598 7 Agenda Control Shell

describe-ks ks-name
Purpose
Print information about a knowledge source (KS).

Method signatures
describe-ks (ks-name symbol)

describe-ks (ks ks)
Package :agenda-shell
Module :agenda-shell

Arguments
unit-class-name A unit-class or a symbol specifying a unit class.

Description
The description is printed to the *standard-output* stream.

See also

define-ks (page 587)
ks (page 606)

Example
> (describe-ks ’start-control-shell-ks)

KS: start-control-shell-ks

Trigger events: ((control-shell-started-event))
Precondition function: #<Function scse-precondition>
Execution function: #<Function scse-fn>

GBBopen 1.5 Reference
7 Agenda Control Shell

[Generic Function]

599

ensure-ks ks-name c«key activation-predicate enabled execution-function ks-class [Function]
ksa-class obviation-events obviation-predicate precondition-function rating
retrigger-events retrigger-function revalidation-predicate trigger-events = ks

Purpose
Programmatically define or redefine a knowledge source (KS).

Package :agenda-shell
Module :agenda-shell

Arguments
ks-name A symbol naming the KS

activation-predicate A function designator specifying a function object of two arguments (the KS
unit instance and the event object) that returns a generalized boolean or nil
(default is ni1)

enabled A generalized boolean (default is t)

execution-function A function designator specifying a function object of one argument (the KSA
unit instance) or nil (defaultis nil)

ks-class A class or a symbol specifying a class

ksa-class A class or a symbol specifying a class

obviation-events An event-specification (see below)

obviation-predicate A function designator specifying a function object of two arguments (the KSA
unit instance and the event object) that returns a generalized boolean or nil
(defaultis nil)

precondition-function A function designator specifying a function object of two arguments (the KS
unit instance and the event object) or nil (default is nil)

rating A rating (default is 1)
retrigger-events An event-specification (see below)
retrigger-function A function designator specifying a function object of two arguments (the KSA

unit instance and the event object) or nil (default is nil)

revalidation-predicate A function designator specifying a function object of one argument (the KSA
unit instance) that returns a generalized boolean or nil (defaultis nil)

trigger-events An event-specification (see below)
ks AKS
Returns

The unit instance representing the KS

Detailed syntax
event-specification ::= (event-signature™)
event-signature ::= (event-class-specifier
[unit-class-or-instance-specifier
[{: slot-name slot-name} | {: slot-names slot-names} |
{:path path} | {:paths paths}]])

event-class-specifier ::= atomic-event-class | (atomic-event-class subeventing-specifier) | t

GBBopen 1.5 Reference
600 7 Agenda Control Shell

ensure-ks

atomic-event-class ::= event-class | event-class-name
subeventing-specifier ::= :plus-subevents | :no-subevents + | =

The shorthand + subevents specifier is equivalent to : plus—-subevents and = to :no—subevents.
unit-class-or-instance-specifier ::= unit-instance | (unit-instance™) |
atomic-unit-class |
(atomic-unit-class subclassing-specifier) | t
atomic-unit-class ::= unit-class | unit-class-name
subclassing-specifier ::= :plus-subclasses | :no-subclasses |+ | =

The shorthand + subclasses specifier is equivalent to : plus—subclasses and =to :no—-subclasses.

Description

This function is called to define or redefine a KS. It is the functional equivalent of define-ks and is
called by the expansion of the define-ks macro. (See the description of define-ks for details of KS
definition and redefinition.)

See also

define-ks (page 587)
ks (page 606)
ks-enabled-p (page 607)
undefine-ks (page 627)

Example
Define an initial KS that is triggered when the control shell is started:

(ensure-ks ’initial
:trigger—events ’ ((control-shell-started-event))
:execution—-function #’initial-ks-function)

ensure-ks

GBBopen 1.5 Reference
7 Agenda Control Shell 601

executed-ksas-of control-shell = ksa-queue [Generic Reader]

Purpose
Returns the executed KSAs queue of control-shell.

Method signatures
executed-ksas-of (control-shell control-shell) = ksa-queue

Package :agenda-shell
Module :agenda-shell

Arguments
control-shell A control-shell object
ksa-queue A ksa-queue object

Returns
The executed KSAs queue object.

Description

This generic function accesses the ksa-queue stored in the executed-ksas link slot of ksa. This
value is maintained by the Agenda Shell and should not be changed.

See also

clear-queue (page 520)
ksa (page 609)
ksa-queue (page 610)
make-queue (page 525)
obviated-ksas-of (page 611)
on-queue-p (page 529)
pending-ksas-of (page 614)
queue (page 532)
queue-element (page 533)
show-queue (page 536)
Example

Show the control shell’s pending KSAs queue (early in a :tutorial-example run):

> (show—queue (executed-ksas—-of (current-control-shell)))
0. #<ksa 2 startup-ks 100>

1. #<ksa 3 random-walk-ks 100>
2. #<ksa 5 random-walk-ks 100>
3. #<ksa 6 random-walk-ks 100>

GBBopen 1.5 Reference
602 7 Agenda Control Shell

execution-cycle-of ksa = cycle-number or nil

Purpose

Returns the cycle number when a KSA was executed.

Method signatures
execution-cycle-of (ksa ksa) = cycle-number

Package :agenda-shell
Module :agenda-shell

Arguments
ksa A KSA
cycle-number An integer or nil

Returns

The execution cycle number of ksa or nil, if ksa has not been executed

Description

[Generic Reader]

This generic function accesses the value stored in the execution-cycle nonlink slot of ksa. This

value is maintained by the Agenda Shell and should not be changed.

See also
ksa (page 609)

Example
Return the execution cycle of ksa:
> (execution-cycle-of ksa)

1237
>

GBBopen 1.5 Reference
7 Agenda Control Shell

603

exit-control-shell srest result-form™

Purpose
Exit the Agenda Shell.

Package :agenda-shell
Module :agenda-shell

Arguments
result-form A form

Errors

Exit-control-shell called outside the context of an executing control shell.

See also

abort-ks-execution (page
control-shell-running-p (page
current-control-shell (page

restart-control-shell (page
start-control-shell (page
Example

Exit the Agenda Shell, indicating that a solution, solution, was found:

(exit—-control-shell ’:solution-found solution)

604

582)
585)
586)
617)
622)

[Function]

GBBopen 1.5 Reference
7 Agenda Control Shell

find-ks-by-name ks-name = ks or nil

Purpose

Return a KS unit instance given its name.

Package :agenda-shell
Module :agenda-shell

Arguments
ks-name A symbol naming the KS.
ks A KS

Returns

The KS unit instance named ks-name or nil, if none has been defined.

See also

define-ks (page 587)
ks (page 606)

Example

Return the KS named start-control-shell-ks:

> (find-ks-by-name ’start-control-shell-ks)

#<ks start-control-shell-ks>
>

GBBopen 1.5 Reference
7 Agenda Control Shell

[Function]

605

ks [Unit Class]

Package :agenda-shell
Module :agenda-shell

Description
The class ks is the default class of instances created by define-ks.

See also

define-ks (page 587)
ksa (page 609)

GBBopen 1.5 Reference
606 7 Agenda Control Shell

ks-enabled-p ks = boolean

Purpose

Determine if the specified KS is enabled for execution.

Seftf syntax
(setf (ks-enabled-p ks) boolean) = boolean

Method signatures
ks-enabled-p (ks ks) = boolean

(setf ks-enabled-p) boolean (ks ks) = boolean
Package :agenda-shell
Module :agenda-shell

Arguments
ks AKS
boolean A generalized boolean

Returns

True if the KS is enabled for execution; nil otherwise.

Description

This generic function accesses the value stored in the enabled nonlink slot of ks.

See also

define-ks (page 587)
ks (page 606)
undefine-ks (page 627)

Examples
See if KS ks is enabled for execution:

> (ks—enabled-p ks)
t
>

Now disable KS ks:
(setf (ks—-enabled-p ks) nil)

Check once again:
> (ks—enabled-p ks)
nil
>

GBBopen 1.5 Reference
7 Agenda Control Shell

[Generic Function]

607

ks-of ksa = ks

Purpose

Returns the knowledge source (KS) unit instance of a KSA.

Method signatures
ks-of (ksa ksa) = ks

Package :agenda-shell
Module :agenda-shell

Arguments
ksa A KSA
ks AKS

Returns
The KS unit instance of ksa

Description

[Generic Reader]

This generic function accesses the value stored in the ks link slot of ksa. This value is maintained by

the Agenda Shell and should not be changed.

See also

ks (page 606)
ksa (page 609)

Example
Return the KS of a KSA:

> (ks-of ksa)
#<ks start-control-shell-ks>
>

608

GBBopen 1.5 Reference
7 Agenda Control Shell

ksa [Unit Class]

Package :agenda-shell
Module :agenda-shell

Description
The class ksa is the default class of unit instances representing KS activations.

See also
ks (page 606)

GBBopen 1.5 Reference
7 Agenda Control Shell 609

ksa-queue

Package :agenda-shell

Module :agenda-shell

The unit class whose instances are used as the header of KSA queues.

Description

See also

clear-queue (page
executed-ksas-of (page
ksa (page
make-queue (page
obviated-ksas-of (page
on-queue-p (page
ordered-ksa-queue (page
ordered-queue (page
queue (page
queue-element (page
show-queue (page
610

520)
602)
609)
525)
611)
529)
613)
530)
532)
533)
536)

[Unit Class]

GBBopen 1.5 Reference
7 Agenda Control Shell

obviated-ksas-of control-shell = ksa-queue [Generic Reader]

Purpose
Returns the obviated KSAs queue of control-shell.

Method signatures
obviated-ksas-of (control-shell control-shell) = ksa-queue

Package :agenda-shell
Module :agenda-shell

Arguments
control-shell A control-shell object
ksa-queue A ksa-queue object

Returns
The obviated KSAs queue object.

Description

This generic function accesses the ksa-queue stored in the obviated-ksas link slot of ksa. This
value is maintained by the Agenda Shell and should not be changed.

See also

clear-queue (page 520)
executed-ksas-of (page 602)
ksa (page 609)
ksa-queue (page 610)
make-queue (page 525)
on-queue-p (page 529)
pending-ksas-of (page 614)
queue (page 532)
queue-element (page 533)
show-queue (page 536)
Example

Show the control shell’s obviated KSAs queue (early in a :tutorial-example run):

> (show—-queue (obviated-ksas-of (current-control-shell)))
The queue is empty.
>

GBBopen 1.5 Reference
7 Agenda Control Shell

611

obviation-cycle-of ksa = cycle-number or nil

Purpose

Returns the cycle number when a KSA was obviated.

Method signatures
obviation-cycle-of (ksa ksa) = cycle-number

Package :agenda-shell
Module :agenda-shell

Arguments
ksa A KSA
cycle-number An integer or nil

Returns

The obviation cycle number of ksa or nil, if ksa has not been obviated

Description

[Generic Reader]

This generic function accesses the value stored in the obviation-cycle nonlink slot of ksa. This

value is maintained by the Agenda Shell and should not be changed.

See also
ksa (page 609)

Example
Return the obviation cycle of ksa:

> (obviation-cycle-of ksa)
1211
>

612

GBBopen 1.5 Reference
7 Agenda Control Shell

ordered-ksa-queue [Unit Class]

Package :agenda-shell

Module :agenda-shell

Description

The unit class whose instances are used as the header of ordered (sorted) KSA queues.
See also

clear-queue (page 520)

ksa (page 609)

ksa-queue (page 610)

make-queue (page 525)

on-queue-p (page 529)

ordered-queue (page 530)
pending-ksas-of (page 614)
queue (page 532)
queue-element (page 533)
show-queue (page 536)

GBBopen 1.5 Reference
7 Agenda Control Shell 613

pending-ksas-of control-shell = ordered-ksa-queue [Generic Reader]

Purpose
Returns the pending KSAs queue of control-shell.

Method signatures
pending-ksas-of (control-shell control-shell) = ordered-ksa-queue

Package :agenda-shell
Module :agenda-shell

Arguments
control-shell A control-shell object
ordered-ksa-queue An ordered-ksa-queue object

Returns
The pending KSAs queue object.

Description

This generic function accesses the ordered-ksa-queue stored in the pending-ksas link slot of ksa.
This value is maintained by the Agenda Shell and should not be changed.

See also

clear-queue (page 520)
executed-ksas-of (page 602)
ksa (page 609)
make-queue (page 525)
obviated-ksas-of (page 611)
on-queue-p (page 529)

ordered-ksa-queue (page 613)
ordered-queue (page 530)

queue-element (page 533)
show-queue (page 536)
Example

Show the control shell’s pending KSAs queue (early in a :tutorial-example run):

> (show—-queue (pending-ksas-of (current-control-shell)))
0. #<ksa 7 random-walk-ks 100>
1. #<ksa 1 count-center-locations-ks 90>
2. #<ksa 4 print-walk-ks 80> (show—queue pending-ksas :end 5)

GBBopen 1.5 Reference
614 7 Agenda Control Shell

rating [Type]

Package :agenda-shell
Module :agenda-shell

Description

An integer between most-negative-rating (-32768) and most-positive-rating (32767),
inclusive. Ratings are used by the Agenda Shell to order pending KSAs.

GBBopen 1.5 Reference
7 Agenda Control Shell 615

rating-of ksa = rating

Purpose
Accesses the rating of a KSA.

Seftf syntax
(setf (rating-of ksa) rating) = rating

Method signatures
rating-of (ksa ksa) = rating

(setf rating-of) rating (ksa ksa) = rating
Package :agenda-shell
Module :agenda-shell

Arguments
ksa A KSA
rating A rating

Returns
The rating of ksa

Description

[Generic Accessor]

This generic function accesses the value stored in the rating nonlink slot of ksa. This value is used

by the Agenda Shell to determine when to execute the KSA.

See also

define-ks (page 587)
ks (page 606)
ksa (page 609)

Examples
Return the rating of a KSA:
> (rating-of ksa)
58
> (setf (rating-of ksa) 80)
80
> (rating-of ksa)
80
>

Note

The rating of a pending KSA can be changed by using setf or related macros with this accessor.

616

GBBopen 1.5 Reference
7 Agenda Control Shell

restart-control-shell skey instance-name = result™ [Function]

Purpose
Restart the agenda shell named instance-name.

Package :agenda-shell

Module :agenda-shell

Arguments

instance-name An object naming a control-shell instance (default is 1)
results (see below)

Returns

One of the following sets of multiple values:
e :quiescence—If the control-shell scheduling loop is terminated due to quiescence (that is, no
more executable KSAs remain in the queue of pending KSAs)

e :stop and (optionally) associated reasons, as multiple values—If one of the following conditions
occurs:

— The exit-control-shell function is called.
— A precondition function or KS-execution function returns : st op and, optionally, associated
reasons.

e Result-values—If the control-shell is terminated by calling exit-control-shell.

Events
A control-shell-restarted—-event is signaled.

Errors

The idle-loop process has not been started on CMUCL. Multiprocessing has not been started on
LispWorks.

See also

abort-ks-execution (page 582)
control-shell-running-p (page 585)
current-control-shell (page 586)

exit-control-shell (page 604)
run-polling-functions (page 303)
start-control-shell (page 622)
Example

Restart the Agenda Shell (in this case, without any KSs defined):

> (restart-control-shell)

;; Control shell 1 restarting after cycle 2

;7 No executable KSAs remain, exiting control shell
;7 Control shell 1 exited: 4 cycles completed

;; Run time: 0 seconds

GBBopen 1.5 Reference
7 Agenda Control Shell 617

http://www.cons.org/cmucl/
http://www.lispworks.com

restart-control-shell

;; Elapsed time: 0 seconds
:quiescence
>

Note

When anon-nil :run-polling-functions value is supplied to start-control-shell (the default on
Common Lisp implementations without threads), run-polling-functions is called at the beginning
of every control-shell-cycle and at one-half-second intervals when the Agenda Shell is hibernating due

to quiescence.

restart-control-shell

GBBopen 1.5 Reference
618 7 Agenda Control Shell

sole-trigger-event-of ksa = event or nil
Purpose
Return the sole trigger event of a KSA.

Method signatures
sole-trigger-event-of (ksa ksa) = event or nil

Package :agenda-shell
Module :agenda-shell

Arguments
ksa A KSA
event An event object or nil

Returns
The trigger event or nil, if one was not found for ksa

Description

If more than one trigger event is found for ksa, an error is signaled.

See also

sole-trigger-instance-of (page 620)

Example
Return the (sole) trigger event of a KSA:
> (sole-trigger-event-of ksa)

#<instance-created-event hyp>
>

GBBopen 1.5 Reference
7 Agenda Control Shell

[Generic Function]

619

sole-trigger-instance-of source = trigger-instance or nil [Generic Function]

Purpose
Return the trigger unit instance of a KSA, event, or a list of KSAs or events.

Method signatures
sole-trigger-instance-of (cons cons) = trigger-instance or nil

sole-trigger-instance-of (event single-instance-event) = trigger-instance or nil

(

(
sole-trigger-instance-of (ksa ksa) = trigger-instance or nil
sole-trigger-instance-of (event multiple—instance—event) = trigger-instance or nil
(

sole-trigger-instance-of (event non-instance-event) = nil
Package :agenda-shell
Module :agenda-shell

Arguments
source A KSA, event, or a list of KSAs or events
trigger-instance A unit instance or nil

Returns
The trigger unit instance or nil, if one was not found in source

Description

Typically, sole-trigger-instance-of is called with a single KSA or single-instance event. If more than
one trigger unit instance is found in source, an error is signaled.

See also

collect-trigger-instances (page 584)
sole-trigger-event-of (page 619)

Example
Return the (sole) trigger unit instance of a KSA:
> (sole-trigger-instance-of ksa)

#<hyp 419 (1835 4791) 0.85 [5..35]>
>

GBBopen 1.5 Reference
620 7 Agenda Control Shell

standard-ksa-class [Unit Class]

Package :agenda-shell
Module :agenda-shell

Description

The class standard-ksa-class is the default class of ksa classes defined by define-ksa-class. It is a
subclass of standard-unit-class.

See also

define-ksa-class (page 595)
print-instance-slots (page 107)
standard-unit-class (page 369)

GBBopen 1.5 Reference
7 Agenda Control Shell 621

start-control-shell srest initargs = result™ [Function]

Purpose
Start the Agenda Shell.

Packqge :agenda-shell
Module :agenda-shell

Arguments
initargs An initialization argument list (see below)
results (See below)

Returns
One of the following sets of multiple values:
e :quiescence—If the control-shell scheduling loop is terminated due to quiescence (that is, no
more executable KSAs remain in the queue of pending KSAs)

e :stop and (optionally) associated reasons, as multiple values—If one of the following conditions
occurs:

- The exit-control-shell function is called.
- A precondition function or KS-execution function returns : st op and, optionally, associated
reasons.

e Result-values—If the control-shell is terminated by calling exit-control-shell.

Events
A control-shell-started-event is signaled.

Errors

The idle-loop process has not been started on CMUCL. Multiprocessing has not been started on
LispWorks.

Detailed syntax
Available initargs are:

awaken-on-event A generalized boolean (default is t)

continue-past-quiescence A generalized boolean (default is nil)

fifo-queue-ordering A generalized boolean (default is t)

hibernate-on-quiescence A generalized boolean (default is nil)

minimum-ksa-execution-rating A rating (default is 1)

instance-name An object naming this control-shell instance (default is 1)

output-stream Control-shell output stream (default is *trace—output *)

pause A generalized boolean (default is nil)

print A generalized boolean (default is t)

run-polling-functions A generalized boolean (default is t on non-threaded Common Lisp
implementations; nil otherwise)

save-executed-ksas A generalized boolean (default is nil)

save-obviated-ksas A generalized boolean (default is nil)

GBBopen 1.5 Reference
622 7 Agenda Control Shell

http://www.cons.org/cmucl/
http://www.lispworks.com

start-control-shell

stepping
stepping-stream

Description

Control-shell stepping options (default is ni1)
Control-shell stepping stream (default is xquery-io«*)

Many Agenda Shell behaviors can be customized by providing non-default values for the following

initargs:

:awaken-on—-event

A generalized boolean value indicating whether the control
shell is to be awakened from hibernation when any event is
signaled

:continue-past—quiescence A generalized boolean value indicating whether the control

:fifo-queue-ordering

shell loop should continue even when quiescence-event
processing has failed to produce any executable KSAs; use
with caution, as the control shell will only exit by an explicit
call to exit-control-shell

A generalized boolean value that indicates a newly rated
pending KSA is to be placed ahead of equally rated KSAs
(first-in, first out) or after them (last-in, first out)

:hibernate-on-quiescence A generalized boolean value that determines whether the

:minimum-ksa—-execution-—

routput—-stream

:pause
:print

:run-polling-functions

:save—-executed-ksas
:save-obviated-ksas

:stepping

:stepping-stream

Stepping options

control-shell will hibernate rather than exit when no
executable KSA exists; this decision point is never reached
when :continue-past-quiescence is true

rating The minimum rating value that a pending KSA must have to
be executed

The stream to be used for control shell output

A generalized boolean that determines whether the control
shell should hibernate until awakened at the start of each cycle
A generalized boolean that determines whether start, restart,
and termination messages are printed by the control shell

A generalized boolean that determines whether polling
functions (provided by the :polling-functions module (see
page 298)) are to be run at the start of each control-shell cycle
A generalized boolean that determines whether executed KSA
instances are to be saved on the executed-ksas queue

A generalized boolean that determines whether obviated KSA
instances are to be saved on the obviated-ksas queue

A list of stepping options (see below) indicating the kinds of
control-shell stepping that are to be enabled initially, or the
symbol t, indicating all stepping options are enabled

The stream to be used for control shell stepping

The supported stepping options and their interpretations are as follows:

ractivation-predicate
:ks—activation
:ksa—-execution
:obviation-predicate
:precondition-function

:process—event

GBBopen 1.5 Reference
7 Agenda Control Shell

about to execute the activation predicate of a KS

about to create a KS activation

about to execute a KS activation

about to execute the obviation predicate of a KS

about to execute the precondition function of a KS

about to perform control-shell processing associated with an event

623

start-control-shell

:quiescence about to perform activities triggered by control-shell quiescence
:retrigger-function about to execute the retrigger function of a KS
:retrigger—-function about to execute the revalidation predicate of a KS

See also

control-shell-running-p (page 585)
current-control-shell (page 586)
exit-control-shell (page 604)
run-polling-functions (page 303)
restart-control-shell (page 617)

Examples
Start the Agenda Shell (in this case, without any KSs defined):
> (start—-control-shell)
;; Control shell 1 started
;7 No executable KSAs remain, exiting control shell
;7 Control shell 1 exited: 2 cycles completed
;; Run time: 0 seconds
;; Elapsed time: 0 seconds
:quiescence
>

Start the Agenda Shell (again without any KSs defined, but with stepping enabled):
> (start-control-shell :stepping ’'t)
;7 Control shell 1 started
>> CS Step (cycle 1):

About to signal quiescence... [? entered]
Stepping commands (follow with <Return>):
d Disable this kind of stepping (:quiescence)
e Enable another kind of stepping
f Evaluate a form
h or ? Help (this text)
q Quit (disable all stepping and continue)
S Show enabled stepping kinds
X Exit control shell

Describe the object of interest (bound to ==)
Enable all stepping
- Disable all stepping
<Space> Continue (resume processing)
>> CS Step (cycle 1):
About to signal quiescence... [d entered]
:quiescence stepping disabled
>> CS Step (cycle 1):
About to signal quiescence... [g entered]
All stepping disabled
;7 No executable KSAs remain, exiting control shell
;7 Control shell 1 exited: 2 cycles completed
;; Run time: 0 seconds
;; Elapsed time: 54 seconds
:quiescence
>

GBBopen 1.5 Reference
624 7 Agenda Control Shell

start-control-shell

Note

When a non-nil :run-polling-functions value is supplied to start-control-shell (the default on
Common Lisp implementations without threads), run-polling-functions is called at the beginning
of every control-shell-cycle and at one-half-second intervals when the Agenda Shell is hibernating due
to quiescence.

start-control-shell

GBBopen 1.5 Reference
7 Agenda Control Shell 625

trigger-events-of ksa = events [Generic Reader]

Purpose
Returns the list of events that triggered a KSA

Method signatures
trigger-events-of (ksa ksa) = events

Package :agenda-shell
Module :agenda-shell

Arguments
ksa A KSA
events A proper list

Returns
The list of events that triggered ksa

Description
This generic function accesses the value stored in the t rigger-events link slot of ksa.

See also

define-ks (page 587)
ks (page 606)
ksa (page 609)

Example
Return the events that triggered a KSA:
> (trigger-events-of ksa)

(#<instance-created-event #<hyp 233 (1835 4791) 0.89 [5..35]>)
>

GBBopen 1.5 Reference
626 7 Agenda Control Shell

undefine-ks ks-name s rest ignored-initargs = deleted-ks-unit-instance [Macrol]

Purpose
Undefine (delete) a knowledge source (KS).

Package :agenda-shell

Module :agenda-shell

Arguments

ks-name A symbol naming the KS (not evaluated, but the remaining arguments are
evaluated)

ignored-initargs The remaining initialization arguments are ignored

deleted-ks-unit-instance A KS unit instance or nil

Returns
The deleted KS unit instance, if KS ks-name was undefined (deleted).

Description

A KS is undefined by deleting the unit instance corresponding to the KS. The undefine-ks macro
provides a convenient shortcut for undefining a KS by minimally editing the defining form (such as
from within an editor buffer).

See also

define-ks (page 587)
ks-enabled-p (page 607)

Examples
Undefine the KS named initial. The following forms are all equivalent:

> (undefine-ks initial
ttrigger-events ’ ((control-shell-started-event))
:execution—-function #’initial-ks-function)
#<deleted-unit-instance ks initial>
> (undefine-ks initial)
#<deleted-unit-instance ks initial>
> (delete—-instance
(find-instance-by-name ’'initial ’ (ks :plus-subclasses)))
#<deleted-unit-instance ks initial>
> (delete-instance
(find-instance-by-name ’'initial ’ (ks +)))
#<deleted-unit-instance ks initial>
>

GBBopen 1.5 Reference
7 Agenda Control Shell 627

628

Glossary

alist
An association list.

association list
A list of conses representing an association of keys with values. The car of each cons is the key
and the cdr is the value associated with that key.

atomic operation
A computation that, once started, is completed without being interrupted by another thread.

autorun forms
Forms in a module file that are to be evaluated conditionally when the file is loaded based on the
value of *autorun-modules®*. Part of the Module Manager Facility (see page 21).

blackboard repository
The internal storage containing all unit instance and space instance objects and associated
retrieval data structures.

boolean dimension
A dimension of :boolean dimension type where :boolean dimension values are either true
(non-nil) or false (nil).

broadcast streamer
An object that is used as a saving or sending destination for multiple journal and
network streamers.

circular list
A list that has no termination because it includes an earlier portion of itself in its successive
sublists.

class
An object that uniquely (directly or indirectly) determines the structure and behavior of a set of
other objects. Members of this set are called instances of the class.

class designator
A class or a symbol that names a class.

class option
An option that refers to a class as a whole or to all the slots of the class.

comparison type
A symbol that indicates the way that dimension values are compared. For an : ordered
dimension value, one of: number, fixnum, short-float, single-float, double-float, or
long-float. For an :enumerated dimension value, one of: eq, eql, equal, or equalp. For a
:boolean dimension value: t.

composite dimension value
A dimension value that is a set, sequence, or series of dimension values.

condition variable
A condition variable provides an atomic means for a thread to release a lock (or recursive lock)
that it holds and go to sleep until it is awakened by another thread. Once awakened, the lock
that it was holding is reacquired atomically before the awakened thread is allowed to do
anything else. A Portable Threads condition-variable object includes the lock that is associated
with the condition variable, and the condition-variable object can be used directly as a lock.

cons
An object with two components called the car and the edr. Conses are used to construct lists.

dimension

GBBopen 1.5 Reference
Glossary 629

A conceptual extent within which values that share some relationship can be placed. GBBopen
uses dimensionality to relate the extent representations of unit instances, space instances, and
retrieval patterns.

GBBopen supports three dimension types:

1. ordered dimensions (: ordered)
2. enumerated dimensions (: enumerated)
3. boolean dimensions (:boolean)

Real-world dimensions (such as time and location) can be represented as ordered dimensions.

dimension name
A symbol used to identify a dimension. In general, two dimensions with different
dimension types should not be given the same dimension name.

dimension type
The interpretation associated with a dimension of a unit class, a space instance, or a
retrieval pattern; one of :ordered, :enumerated, or :boolean.

dimension value
The value that can be used to position a unit instance on a dimension in one or more
space instances.

dimension-value type
The interpretation associated with a dimension value of a unit instance; one of : point,
:interval, :mixed (both points and intervals), : element, or :boolean. The dimension-value
types :point, :interval, and :mixed indicate values in an ordered dimension, : element
indicates a value in an enumerated dimension, and :boolean indicates a value in a
boolean dimension.

dimensional extent
The dimensions of a space instance.

dotted list
A list that is terminated by a non-ni1l atom rather than the empty list, nil.

enumerated dimension
A dimension of : enumerated dimension type where :element dimension values are individual
elements from an extensible set of discrete elements.

ESET
A keys-only table that automatically transitions between list and hash-table implementations.
The keys are compared using eq.

ET
A key-and-value table that automatically transitions between list and hash-table
implementations. The keys are compared using eq.

event
An activity that is noticed, and signaled, by GBBopen.

event class
An object that is a subclass of standard-event-class.

event function
A function that is associated with one or more event specifications and is called whenever such
an event occurs. (See signal-event for the required event-function arguments for each event
metaclass.

event instance
An object whose class is a subclass of standard-event-instance.

GBBopen 1.5 Reference
630 Glossary

event metaclass
One of five “types” of event. Every event class has one of the following event metaclasses:
non-instance-event-class, instance-event-class, space-instance-event-class,
nonlink-slot-event-class,or link-slot-event-class.

executable KS activation
A pending KS activation that meets the criteria for execution, such as having a rating above the
minimum KSA execution rating in effect for the control shell.

executed KS activation
A KS activation that has completed execution and will, therefore, not be operated on again by
the control shell.

extended event-class specification
A specification of one or more event classes as indicated by one of the following:

e aevent class

e a symbol naming a event class

e a list containing one of the above followed by the keyword :plus—-subevents or the
keyword :no-subevents

e the symbol t, which is equivalent to (standard-event-instance :plus-subevents)

extended unit-class specification
A specification of one or more unit classes as indicated by one of the following:

e a unit class

e a symbol naming a unit class

e a list containing one of the above followed by the keyword :plus—-subclasses or the
keyword :no-subclasses

e the symbol t, which is equivalent to (standard-unit-instance :plus—subclasses)

extended unit-class or instance specification
A specification of one or more unit instances or one or more unit classes as indicated by one of
the following:

e a unit class

e a symbol naming a unit class

e a list containing one of the above followed by the keyword :plus—-subclasses or the
keyword :no-subclasses

e the symbol t, which is equivalent to (standard-unit-instance :plus—subclasses)

e a unit instance

e a list of unit instances

extended unit-classes specification
A specification of one or more unit classes as indicated by one of the following:

e a unit class

e a symbol naming a unit class

e a list containing one of the above followed by the keyword :plus-subclasses or the
keyword :no-subclasses

e a list of one or more of the above

e the symbol t, which is equivalent to (standard-unit-instance :plus-subclasses)

feature
A symbol in the list value of the variable *features*. The features in this features list are used
to control conditional compilation and implementation-specific behaviors.

form
An object (including an expression) to be evaluated.

GBBopen 1.5 Reference
Glossary 631

function designator
An object that specifies a function. Either: a symbol (denoting the function named by that
symbol in the global environment), or a function object (denoting itself). The term “function” is
often used to denote a function designator, with the term “function object” used when referring
specifically to a function object.

function object
An object of type function. The term “function” is often used to denote a function designator,
with the term “function object” used when referring specifically to a function object.

fixnum
An integer between most-negative—-fixnum and most-positive—fixnum inclusive.

generalized boolean
An object used as a truth value, where nil represents false and all other objects represent true.

generalized reference
A reference to a location storing a value as if to a variable.

generic function
A function whose behavior depends on the classes or identities of the arguments supplied to it.

incomplete unit instance
A forward-referenced unit instance created during the loading of a blackboard repository or
journal file or the reading of a network stream. An incomplete unit instance does not reside on
any space instance or have all of its saved/sent slot values present until it becomes "complete” by
loading or receiving a form containing the instance’s full details.

incomposite dimension value
A dimension value that is a single point, interval, element, or boolean (i.e., not a
composite dimension value).

initialization argument list
A list of alternating names and values used to initialize or reinitialize instances of classes. If
more than one name and value pair has the same name, only the first such pair is used to
provide the value.

instance
An object whose structure and behavior is uniquely (directly or indirectly) determined by a class
object.

instance name
An object that uniquely identifies an instance of a unit class. The same object can be used to
identify instances of different unit classes, but the same instance name cannot be used with two
instances of the same class.

interval
A cons, two-element list, or two-element array containing the start and end value representing
the set of real numbers between them, inclusive.

journal
A file containing changes made to the blackboard repository that can be loaded in order to
perform the recorded changes.

journal streamer
An object that is used as a saving destination for journaling functions.

journaling
Writing changes made to the blackboard repository to a file that can be loaded in order to
perform the recorded changes. Journaling can be used with or without repository saving to
recreate a blackboard repository.

GBBopen 1.5 Reference
632 Glossary

keyword symbol
A symbol whose home package is the keyword package.

knowledge source
The expertise associated with a collaborating computational entity in a blackboard application
(often abbreviated as “KS”). More specifically, a KS is an object containing the expertise and
other information associated with a computational entity. A ks object is also a unit instance, but
KSs are normally described by their more specific categorization.

KS activation
The application of a KS to a specific computational context (often abbreviated as “KSA”). More
specifically, a KSA is a ksa-class object representing the KS activation. A ksa is also a
unit instance, but they are normally described by their more specific categorization.

KS execution
The execution of a KS activation.

ks class
An object that is a subclass of standard-unit-class that is used to represent a KS.

ksa class
An object that is a subclass of standard-ksa-class that is used to represent a KSA.

left-leaning red-black tree
An LLRB tree.

LLRB tree
A binary search tree that is roughly balanced, keeping the worst-case time for operations such
as inserting, deleting, and finding values proportional to the height of the tree. Left-leaning
red-black (LLRB) trees are a simpler version of red-black trees introduced by Sedgewick in 2008
where all red links must lean left except during inserts and deletes.

link
A bi-directional relationship between two unit instances represented by a pair of pointers, one at
each unit instance pointing to the other unit instance. GBBopen’s link operators maintain the
bi-directional consistency of link pointers.

link slot
A slot designated for the outgoing pointers of links associated with that slot.

link-pointer object
An object that can be used as a pointer in a link slot. A link-pointer object must have a
link-instance-of method defined for it whose result returns the unit instance to be used as the
link pointer.

link-slot place
A form which is suitable for use as a generalized reference to a link slot. Typical examples of
link-slot-place forms include:
(slot—accessor unit-instance)
(slot—value unit-instance slot-name)

where:

slot-accessor 1is a symbol specifying an accessor function for a link slot
unit-instance is a unit instance
slot-name is a symbol naming a link slot in unit-instance

lock
A mutual-exclusion object that allows multiple threads to synchronize activities or access to
shared resources. A lock has two states, unlocked or locked by a specific thread. Once a lock is
held by a thread, any other threads attempting to lock it will block. When the lock-holding

GBBopen 1.5 Reference
Glossary 633

thread unlocks (releases) the lock, one of the blocked threads will acquire (lock) it and proceed.
If the thread that is holding the lock attempts to re-acquire it, an error is signaled (see
recursive lock).

metaobject
An instance of a metaobject class.

metaobject class
A class object that is a subclass of exactly one of the following classes: class,
slot-definition, generic—function, method, and method-combination.

module
A set of related files that form a component, library, or application. Part of the Module Manager
Facility (see page 21).

namestring
A string that represents a filename.

network streamer
An object that is used as a sending destination for network streaming functions.

network streaming
Sending unit instances (and space instances, changes made to the blackboard repository, and
commands to a streamer node (typically in another Common Lisp image).

non-keyword symbol
A symbol whose home package is not the keyword package.

obviated KS activation
An unexecuted KS activation that has been deemed unnecessary and will therefore never be
executed.

Offset Universal Time
A non-negative integer number of seconds measured from the beginning of a time base later
than the year 1900 (ignoring leap seconds). Offset Universal Time is Universal Time that is
offset by an integer time-base value so that the most often used Offset Universal Time values in
an application are fixnums.

ordered dimension
A dimension of : ordered dimension type where :point, :interval, and :mixed
dimension values are points or intervals on a continuous, real-number extent.

ordering dimension
The dimension whose dimension values are used to order a series-composite dimension value.

ordered queue
A doubly linked, ordered queue. A GBBopen queue is headed by an object that is a subclass of
ordered-queue.

package designator
A string designator (denoting a string that designates the name or nickname of a package) or a
package (denoting itself).

passive socket
A socket that is used to accept a connection initiation to a specific service port.

patch
A modification to the existing code of an application that is loaded after the regular application
code, either at startup or into an executing application.

path expression
A regular expression representing one or more space-instance paths.

GBBopen 1.5 Reference
634 Glossary

pathname
A structured representation of the name of a file. A pathname has six components: host, device,
directory, name, type, and version.

pathname designator
A namestring (denoting the corresponding pathname), a stream associated with a file (denoting
the pathname used to open the file), or a pathname (denoting itself).

pending KS activation
A KS activation that has not been executed or obviated.

periodic function
A function of no arguments that is run repeatedly at a specified interval, at a resolution as brief
as supported by sleep. A separate thread is spawned to manage the periodic invocations of the
specified function.

A count can also be provided for the periodic function. When specified, this value is decremented
prior to each invocation of the function and, when it is no longer positive, the periodic-function
thread is terminated.

predicate function
A function that returns a generalized-boolean value.

proper list
A list terminated by the empty list. (The empty list is a proper list.)

property
(of a property list) 1. A pair of elements in a property list representing the name of a property
and its associated value. 2. The value of a property.

property list
A list containing an even number of elements that represent alternating names (sometimes
called indicators or keys) and their associated values.

pseudo-probability
A discretized fixnum representation for probability values that maps probability values in the
range [0.0..1.0] to integers in the range [0..1000].

pseudo-probability-ln
A discretized fixnum representation for the natural logarithm of a pseudo-probability value.
Pseudo-probability-ln values range from [-6907756..0].

queue
A doubly linked queue. A GBBopen queue is headed by an object that is a subclass of queue.
GBBopen queues that maintain a sorted ordering of queue elements are provided by
ordered queues.

queue element
An object that is a subclass of queue-element.

quiescence
A control-shell state when no more executable KSAs are in the queue of pending KSAs.

rating
An integer between -32768 and 32767 inclusive, used by the Agenda Shell to order
pending KSAs (see rating).

recursive lock
A mutual-exclusion object that allows multiple threads to synchronize activities or access to
shared resources. A recursive lock has two states, unlocked or locked by a specific thread. Once
a recursive lock is held by a thread, any other threads attempting to lock it will block. When the
lock-holding thread unlocks (releases) the recursive lock, one of the blocked threads will acquire
(lock) it and proceed. If the thread that is holding the recursive lock attempts to re-acquire it,

GBBopen 1.5 Reference
Glossary 635

that thread is allowed to proceed as if it had acquired the lock (without error or blocking, see
lock).

relative directory
A directory defined in relation to another directory definition. Part of the Module Manager
Facility (see page 21).

REPL command
A keyword command that can be entered at the top level read-eval-print loop (REPL) in your
Common Lisp environment. REPL commands (some with arguments) provide convenient
shortcuts for often-used operations.

retrieval pattern
A list argument to filter-instances, find-instances, and map-instances-on-space-instances
specifying the dimension value requirements for selecting unit instances to be returned.

required module
A sequence of modules that must be compiled (if needed) and loaded, in order, before the
requiring module is compiled (if needed) and loaded. Part of the Module Manager Facility (see
page 21).

root directory
A fixed anchor directory for a tree of relative directory definitions. Part of the Module Manager
Facility (see page 21).

scheduled function
An object that contains a function that may be scheduled to run at an absolute or relative time.
When that specified time arrives, the function is invoked with a single argument: the
scheduled-function object.

A repeat interval can also be specified for the scheduled function. When specified, this value is
used whenever the function is invoked to schedule the function again at a new time relative to
the current invocation.

Scheduled functions can be scheduled to a resolution of one second. Periodic function
invocations at brief time intervals are provided by periodic functions.

series-composite dimension value
A dimension value that is a series of dimension values that are ordered by the dimension values
of another dimension (the series-composite ordering dimension).

series-composite ordering dimension
The dimension whose values are used to order a series-composite dimension value.

sequence-composite dimension value
A dimension value that is a sequence of dimension values.

set-composite dimension value
A dimension value that is a set of dimension values.

slot
A component of an object that can store a value.

space
Pertaining to a space class or space instance.

space class
An object that is a subclass of standard-space-class.

space instance
An object whose class is a subclass of standard-space-instance. A space instance is also a
unit instance, but space instances are normally described by their more specific categorization.

GBBopen 1.5 Reference
636 Glossary

space-instance path
A complete list of space-instance names, starting with the most distant indirect parent
space-instance name, that uniquely identifies a space instance in the blackboard repository.

standard-gbbopen-instance
An object whose class is a subclass of standard-gbbopen-instance. It is a superclass of
standard-event-instance and standard-unit-instance.

storage specification
A specification of how unit instances are to be stored on a space instance.

streamer
An object that is used as a saving or sending destination for journaling or network-streaming
functions.

streamer node
A logical “host” for sending and receiving streamed updates to unit instances and to the
blackboard repository. Each streaming node is resolved uniquely by host and port and should be
defined with a unique name. Although multiple streaming nodes can be defined for the same
Common Lisp image, typically only one streaming node is defined per image.

streamer queue
A thread local queue of changes associated with a streamer that are being held until in memory
until the queue is written or cleared.

string designator
An object that denotes a string. One of: a character (denoting a singleton string that has the
character as its only element), a symbol (denoting the string that is its name), or a string
(denoting itself).

subclasses
The classes that inherit from a class.

subevents
The classes that inherit from an event class.

system name
A keyword associating a set of REPL commands, directory definitions, and module definitions
with a specific library or application.

thread
A thread in a multi-threaded Common Lisp implementation or a Lisp process in a Common Lisp
that provides multiprocessing.

thread-local binding
A dynamic binding that is visible only to a single thread.

three-way comparison test
A function of two arguments that returns: a negative fixnum if the first argument is less than
the second argument, zero if the two arguments are equal, and a positive fixnum if the first
argument is greater than the second argument.

time zone
A rational number between -24 (inclusive) and 24 (inclusive) that represents a time zone as a
number of hours offset from Greenwich Mean Time. A non-integral time zone must be a

multiple of 5.

unit
Pertaining to a unit class or unit instance.

unit class
An object that is a subclass of standard-unit-class.

GBBopen 1.5 Reference
Glossary 637

unit instance
An object whose class is a subclass of standard-unit-instance. A space instance is also a unit
instance, but space instances are normally described by their more specific categorization.

Universal Time
A non-negative integer number of seconds measured from the beginning of the year 1900
(ignoring leap seconds).

variable symbol
A symbol that can accept a binding.

638

Index

Page references are shown in bold when they refer to
the definition or main source of information on the
entry. A page reference that is given in green italics
indicates an instructive example of the use of that
entity.

*$, 146

*$$, 147

*$$$, 148

*$&, 145

x%, 149

*x&, 144

< (ordered-dimension pattern operator), 473, 476, 484,
494, 554

<= (ordered-dimension pattern operator), 473, 476,
484, 494, 554

<=$, 146

<=$$, 147

<=$$$, 148

<=$&, 145

<=%, 149

<=&, 144

<$, 146

<$ (ordered-dimension single-float pattern operator),
473,477,484, 494, 554

<=$ (ordered-dimension single-float pattern operator),
473,477,484, 494, 554

<$$, 147

<$$ (ordered-dimension double-float pattern
operator), 473, 477, 484, 494, 554

<=$$ (ordered-dimension double-float pattern
operator), 473, 477, 484, 494, 554

<$$8$, 148

<$$$ (ordered-dimension long-float pattern operator),
473,477, 484, 494, 554

<=5$$$ (ordered-dimension long-float pattern
operator), 473,477, 484, 494, 554

<$&, 145

<& (ordered-dimension short-float pattern operator),
473,477,484, 494, 554

<=$& (ordered-dimension short-float pattern
operator), 473, 477, 484, 494, 554

<%, 149

<% (ordered-dimension pseudo-probability pattern
operator), 473, 477, 484, 494, 554

<=% (ordered-dimension pseudo-probability pattern
operator), 473, 477, 484, 494, 554

<&, 144

<& (ordered-dimension fixnum pattern operator), 473,
476, 484, 494, 554

<=& (ordered-dimension fixnum pattern operator),
473,476, 484, 494, 554

> (ordered-dimension pattern operator), 473, 476, 484,
494, 554

GBBopen 1.5 Reference
Index

>= (ordered-dimension pattern operator), 473, 476,
484,494, 554

>=$, 146

>=$$, 147

>=$$$, 148

>=$&, 145

>=%, 149

>=&, 144

>$, 146

>$ (ordered-dimension single-float pattern operator),
473,477,484, 494, 554

>=$ (ordered-dimension single-float pattern operator),
473,477,484, 494, 554

>$$, 147

>$S (ordered-dimension double-float pattern
operator), 473, 477, 484, 494, 554

>=55 (ordered-dimension double-float pattern
operator), 473, 477, 484, 494, 554

>$$$, 148

>5$$ (ordered-dimension long-float pattern operator),
473,477,484, 494, 554

>=5$55$ (ordered-dimension long-float pattern
operator), 473, 477, 484, 494, 554

>$&, 145

>3$& (ordered-dimension short-float pattern operator),
473,477,484, 494, 554

>=$& (ordered-dimension short-float pattern
operator), 473, 477, 484, 494, 554

>%, 149

>% (ordered-dimension pseudo-probability pattern
operator), 473, 477, 484, 494, 554

>=% (ordered-dimension pseudo-probability pattern
operator), 473, 477, 484, 494, 554

>&, 144

>s& (ordered-dimension fixnum pattern operator), 473,
476,484, 494, 554

>=& (ordered-dimension fixnum pattern operator),
473,476, 484, 494, 554

(setf documentation), 32, 34, 36

* (path-expression match character), 392, 396, 398,
400, 407, 412, 450, 453, 458, 539, 560

*%, 150

automatically-create-missing-directories, 23

autorun-modules, 24

block-saved/sent-time, 501

block-saved/sent-value, 502

coerce-contracted-interval-rationals-to-floats,
417

default-network-stream-server-port, 572

disable-with-error-handling, 64

*features®, 631

find-verbose, 467

gbbopen-modules-directory-verbose, 10

*ignored-gbbopen-modules-directory-
subdirectories™,
9

month-precedes-date, 158

639

ot-base, 198

patches-only, 25

periodic-function-verbose, 269

preferred-browser, 11, 318

print-object-for-sending, 503, 504

save/send-references-only, 503, 504

schedule-function-verbose, 270

skip-deleted-unit-instance-class-change, 324

standard-output, 37, 299, 300, 338, 340, 341, 396,
447449, 599

sym-file-verbose, 12

time-first, 159

use-marking, 468

warn-about-unusual-requests, 469

year-first, 160

+ (path-expression match character), 392, 396, 398,
400, 407, 412, 450, 453, 458, 539, 560

+$, 146

+$$, 147

+$$$, 148

+$&, 145

+%, 149

+&, 144

-$, 146

-$$, 147

-$$$, 148

-$&, 145

%, 149

-&, 144

—-infinity, interval start value, 473, 477, 484, 494,
554

/= (ordered-dimension pattern operator), 473, 476,
484, 494, 554

/=$, 146

/=$ (ordered-dimension single-float pattern operator),
473,477,484, 494, 554

/=$$, 147

/=$$ (ordered-dimension double-float pattern
operator), 473, 477, 484, 494, 554

/=$$$, 148

/=5$55 (ordered-dimension long-float pattern
operator), 473, 477, 484, 494, 554

/=$&, 145

/=$& (ordered-dimension short-float pattern operator),
473,477,484, 494, 554

/=%, 149

=% (ordered-dimension pseudo-probability pattern

operator), 473, 477, 484, 494, 554

/=&, 144

/=& (ordered-dimension fixnum pattern operator),
473,476, 484, 494, 554

/$, 146

/$$, 147

/$$$, 148

/$&, 145

/%, 149, 151-152

/&, 144

640

:agenda-shell module, 581

:all pattern, 472,483,493, 553

:awaken-on-event, start-control-shell initarg, 622

:boolean, 331, 439, 592, 5696, 630

:cm REPL command, 27

:commands REPL command (Show extended-REPL
commands), see the GBBopen Tutorial

:continue-past-quiescence, start-control-shell
initarg, 622

:create-dirs, compile/load-module option, 16, 26

:developing

define-module file option (patch files only), 26, 31, 47

:di REPL command, 339

:disable-compiler-macros, 62

:double-metaphone module, 315

:ds REPL command (Describe object), see the GBBopen
Tutorial

:dsbb REPL command, 447

:dsi REPL command, 448

:dsis REPL command, 449

:element, 331,439, 592, 596, 630

:exit REPL command (Exit Lisp), see the GBBopen
Tutorial

:fi REPL command, 482

: fifo—queue, start-control-shell initarg, 622

: fixnum-size-below-29, feature, 143

:fixnum-size-supports-unsigned-byte-32,
feature, 143

: forces-recompile, define-module file option, 26, 31

:fsi REPL command, 452

:full-safety, 63

: gbbopen-core module, 323

:gbbopen-tools module, 61, 143

:gbbopen-tools module, 214

:has-double-float, feature, 143

:has-long-float, feature, 143

:has-short—-float, feature, 143

:has-single-float, feature, 143

:hibernate-on—-quiescence, start-control-shell
initarg, 622

:initial-space-instances, 358, 362, 364, 456

:instance—name, 358, 362, 364

:instance-name, start-control-shell initarg, 622

:interval, 630

:dm REPL command, 48

:mf REPL command, 50

:minimum-ksa-execution-rating,
start-control-shell initarg, 622

:mixed, 331,439, 592, 596, 630

:module-manager module, 21

loading, 21

:module-manager module, 65, 109, 158, 162, 164, 183

:name, restart-control-shell initarg, 617

:network—-streaming module, 571

:no-subclasses, 341, 392, 396, 398, 400, 403, 405,
407,412, 470, 472, 475, 479, 481, 483, 488, 490,
491,493, 496, 539, 551, 553, 560, 588, 601, 631

GBBopen 1.5 Reference
Index

:no-subevents, 392, 396, 398, 400, 403, 405, 407,
412, 588, 601, 631
:noautorun, compile/load-module option, 16, 26, 47,
49
:noload, define-module file option, 26, 31
:nopatches, compile/load-module option, 16, 26, 47
:nopropagate, compile/load-module option, 16, 16,
26, 47
:os—interface module, 317
:ot REPL command, 200
:output-stream, start-control-shell initarg, 622
:pa REPL command (Set current package), see the
GBBopen Tutorial
:pause, start-control-shell initarg, 622
:pic REPL command, 471, 492
:plus—-subclasses, 341, 392, 396, 398, 400, 403, 405,
407,412,470, 472,475,479, 481, 483, 488, 490,
491, 493, 496, 539, 551, 553, 560, 588, 601, 631
:plus—subevents, 392, 396, 398, 400, 403, 405, 407,
412, 588, 601, 631
:point, 331,439, 592, 596, 630
:polling-functions module, 298
:portable-sockets module, 304
:portable-threads module, 224
:portable-threads module, 268
:print, start-control-shell initarg, 622
:print, compile/load-module option, 16, 26, 47, 49
:propagate, compile/load-module option, 16, 16, 26,
47, 62, 63
:queue module, 519
:range, 331,439, 592, 596
:recompile
compile/load-module option, 16, 26, 62, 63
:recompile
define-module file option, 26, 31
:reload
compile/load-module option, 16, 26, 47
:reload
define-module file option, 26, 31, 47
:run-polling-functions, start-control-shell
initarg, 622
:save-executed-ksas, start-control-shell initarg,
622
:save-obviated-ksas, start-control-shell initarg,
622
:skip-recompile, define-module file option, 26, 31
:source
compile/load-module option, 16, 26, 47, 49
:source
define-module file option, 26, 31, 47
:space-instances, 358, 362, 364, 456
: stepping, start-control-shell initarg, 622
:stepping-stream, start-control-shell initarg, 622
: stop, value returned by a KS-execution function, 588
: streaming module, 538, 566
:systems REPL command (Show all systems), see the
GBBopen Tutorial

GBBopen 1.5 Reference
Index

:undefine-system REPL command (Undefine a
system), see the GBBopen Tutorial

:use—global-instance—-name—-counter, 352, 364,
366, 367

sut REPL command, 170, 175

= (path-expression match character), 392, 396, 398,
400, 407, 412, 450, 453, 458, 539, 560

= (ordered-dimension pattern operator), 473, 476, 484,
494, 554

=$, 146

=$ (ordered-dimension single-float pattern operator),
473,477,484, 494, 554

=$$, 147

=$$ (ordered-dimension double-float pattern operator),
473,477,484, 494, 554

=$$$, 148

=$$3 (ordered-dimension long-float pattern operator),
473,477, 484, 494, 554

=$&, 145

=$¢& (ordered-dimension short-float pattern operator),
473,477,484, 494, 554

=%, 149

=% (ordered-dimension pseudo-probability pattern
operator), 473, 477, 484, 494, 554

=&, 144

=& (ordered-dimension fixnum pattern operator), 473,
476,484, 494, 554

? (path-expression match character), 392, 396, 398,
400, 407, 412, 450, 453, 458, 539, 560

$, 146

$$, 147

$$$, 148

$&, 145

%, 149

&, 144

"~ (path-expression match character), 392, 396, 398,
400, 407, 412, 450, 453, 458, 539, 560

1+$, 146

1+$$, 147

1+$$$, 148

1+$&, 145

1+%, 149

1+&, 144

1-$, 146

1-$$, 147

1-$$$, 148

1-$&, 145

1-%, 149

1-&, 144

abbreviations

time zone, 157
abort-ks-execution, 582
abs$, 146
abs$$, 147
abs$$$, 148
abs$&, 145

641

abs%, 149
abs&, 144
abuts (ordered-dimension pattern operator), 473, 476,
484, 494, 554
abuts$ (ordered-dimension single-float pattern
operator), 473, 477, 484, 494, 554
abuts$$ (ordered-dimension double-float pattern
operator), 473, 477, 484, 494, 554
abuts$$$ (ordered-dimension long-float pattern
operator), 473, 477, 484, 494, 554
abuts$s (ordered-dimension short-float pattern
operator), 473, 477, 484, 494, 554
abuts% (ordered-dimension pseudo-probability
pattern operator), 473, 477, 484, 494, 554
abutsé& (ordered-dimension fixnum pattern operator),
473,476, 484, 494, 554
accept a socket stream connection, 305
accept-connection, 305, 312
accessor-method-slot-definition, 141
acknowledgments, xiii
acquiring
a lock, 263
a recursive lock, 263
activation cycle, of a KSA, 583
activation-cycle-of, 583
add-dependent, 141
add-direct-method, 141
add-direct-subclass, 141
add-event-function, 351, 392-393
add-instance-to-space-instance, 430
add-mirroring, 539
add-polling-function, 299
add-to-broadcast-streamer, 540
add-to-eset, 205-206, 207, 211
agenda Shell
quiescence, 635
agenda shell
exiting, 588, 604
starting, 622
stepping options, 623
agenda shell, restarting, 617
alist, see association list, see association list
all-scheduled-functions, 271, 286-290, 297
all-threads, 226, 261
allow-redefinition, 65
allowed unit classes
of a space instance
changing, 432
allowed-unit-classes-of, 431
and (conjunctive-pattern operator), 472, 476, 483, 493,
553
as-atomic-operation, 227
ASDF (Another System Definition Facility), 21
association list, 629
decrementing the value of a pair, 78
incrementing the value of a pair, 113
pushing a new pair onto, 78, 111, 113

642

pushing a pair onto, 110

updating the value of a pair, 111
association list, searching for an entry in, 66
assq, 66
atomic operation, 629
atomic operations

decf, 228

decf&, 229

delete, 230

flush, 232

incf, 233

incf&, 234

pop, 235

push, 236

pushnew, 237
atomic-decf, 228
atomic-decf&, 229
atomic-delete, 230-231
atomic-flush, 232
atomic-incf, 233
atomic-incf&, 234
atomic-pop, 235
atomic-push, 236
atomic-pushnew, 237
autorun form, module, 629
awaken-thread, 238
awakening a thread, 238

backslash character, in Windows file specifications, 3
blackboard repository, 629

checking if empty, 436, 451

loading from a file, 507

locking, 465

printing information about, 447

saving to a file, 514
boolean dimension, 629

pattern operators, 473, 477, 484, 494, 554

unary-pattern operators, 473, 477, 484, 494, 554
boolean, generalized, 632
bounded-value, 67
bounded-value$, 67, 146
bounded-value$$, 67, 147
bounded-value$$$, 67, 148
bounded-value$&, 67, 145
bounded-value%, 67, 149
bounded-value&, 67, 144
brief-date, 161-162
brief-date-and-time, 163-164
brief-duration, 165-166
brief-run-time-duration, 167
broadcast streamer, 629

adding streamer to, 540

making, 543

removing streamer from, 546
browse-hyperdoc, 318
browse-hyperdoc.el, 7

GBBopen 1.5 Reference
Index

calling a function in another package, 15
car, 629
case-using, 68-69
case-using-failure, 70, 71, 90
ccase-using, 71-72
cdr, 629
ceiling$, 146
ceiling$$, 147
ceiling$$$, 148
ceiling$&, 145
ceiling%, 149
ceiling&, 144
change-class, 325-326, 366
change—-instance-class—event, 325
change-space-instance, 432-433
changing
a space instance characteristics, 432
repeat-interval, of a scheduled function, 290
check-all-instance-links, 375-376
check-for-deleted-instance, 327
check-instance-locators, 328
check-link-definitions, 377-378
check-ot-base, 199
children-of, 434, 459
circular list, 629
class, 629, 629
changing, of a unit instance, 325
condition-variable, 239
defining/redefining, 83
deleted-unit-instance, 337
direct-link-definition, 379
direct-nonlink-slot-definition, 346
effective-link-definition, 380
effective-nonlink-slot-definition, 347
event, 630
finalization, 92
gbbopen-direct-slot-definition, 348
gbbopen-effective-slot-definition, 349
ks, 633
ks, 606
ksa, 633
ksa, 609
ksa-queue, 610
metaobject, 634
option, 629
ordered-queue, 530, 613
queue, 532
queue-element, 533
space, 636
standard-event-class, 410
standard-event-instance, 411
standard-gbbopen-instance, 126
standard-ksa-class, 621
standard-link-pointer, 388
standard-space-class, 463
standard-space-instance, 464
standard-unit-class, 369

GBBopen 1.5 Reference
Index

standard-unit-instance, 370
subclasses, 637
unit, 637
class designator, 629
class object, 629
class-default-initargs, 141
class-direct-default-initargs, 141
class-direct-slots, 141
class-direct-subclasses, 141
class-direct-superclasses, 141
class-finalized-p, 141
class-instances-count, 329
class-precedence-list, 141
class-prototype, 141
class-slots, 141
clbuild, 4
clear-queue, 520
clear-space-instances, 435
clear-streamer-queue, 541
CLOS entities, 141
close one direction of an open socket stream, 311
close-external-program-stream, 319, 321
close-passive-socket, 305, 306, 308
close-streamer, 542
coerce$, 146
coerce$$, 147
coerce$$$, 148
coerce$&, 145
coerce&, 144
collect-trigger-instances, 521, 526, 584
command
REPL, 636
command, top-level loop, defining, 13
Common Lisp HyperSpec, 7
comparison-type, of dimension values, 629
compile-module, 25, 26-27, 62, 63
compiler macro
defining, 82
expanding, 73, 74
compiler macros
disabling, 62
compiler, disabling compiler macros, 62
compiler-macroexpand, 73
compiler-macroexpand-1, 74
compiling, a module, and also loading module, 16, 18,
26
creating missing directories, 23
patches only, 25
composite dimension
ordering dimension, of a series-composite dimension,
636
value, 629
value, sequence, 636
value, series, 636
value, set, 636
compute-applicable-methods-using-classes,
141

643

compute-class—-precedence-list, 141
compute-default-initargs, 141
compute-discriminating-function, 141
compute-effective-method, 141
compute-effective-slot-definition, 141
compute-slots, 141
condition
case-using-failure, 70
condition variable
creating, 247
condition-variable, 239
condition-variable-broadcast, 240
condition-variable-signal, 241, 263
condition-variable-wait, 242
condition-variable-wait-with-timeout, 243
confirm-if-blackboard-repository-not-empty-p,
436437
conjunctive pattern, 472, 476, 483, 493, 553
connection
accepting, 305
opening, 309, 314
connection server
starting, 312
cons, 629
continue-patch, 28-29, 40, 57
control shell
executed KSAs of, 602
exiting, 588, 604
obtaining the current, 586
obviated KSAs of, 611
pending KSAs of, 614
quiescence, 635
restarting, 617
starting, 622
stepping options, 623
control-shell
checking running status, 585
control-shell-restarted-event, 617
control-shell-running-p, 272, 295, 585
control-shell-started-event, 622
copy, an interval, 418
copy-interval, 418, 421
counted-delete, 75-76
covers (ordered-dimension pattern operator), 473,
476,484,494, 554
covers$ (ordered-dimension single-float pattern
operator), 473, 477, 484, 494, 554
covers$$ (ordered-dimension double-float pattern
operator), 473, 477, 484, 494, 554
covers$$$ (ordered-dimension long-float pattern
operator), 473, 477, 484, 494, 554
covers$s (ordered-dimension short-float pattern
operator), 473, 477, 484, 494, 554
covers% (ordered-dimension pseudo-probability
pattern operator), 473, 477, 484, 494, 554
coversé& (ordered-dimension fixnum pattern
operator), 473, 476, 484, 494, 554

644

creating

a condition variable, 247

a keyword symbol, 101

a lock, 249, 250

a queue, 525

a scheduled function, 273

a space instance, 455

a thread, 254, 255

a unit instance, 364

an ESET, 212

an ET, 213
current-control-shell, 536, 586, 602, 611, 614
current-thread, 244

date
formatted, 127, 161, 163, 172, 195
parsing, 168, 181, 184, 190
date and time entities, 157
using evin-printv, 402
using printv, 108
using printvot, 201
decf-after, 77
decf-after$, 77
decf-after$$, 77
decf-after$$$, 77
decf-after$&, 77
decf-after%, 77
decf-after&, 77
decf/delete-acons, 78-79
decf/delete$-acons, 146
decf/delete$$-acons, 147
decf/delete$$$-acons, 148
decf/delete$&-acons, 145
decf/delete%-acons, 149
decf/delete&-acons, 144
decf$, 146
decf$-after, 146
decf$/delete-acons, 79
decf$$, 147
decf$$-after, 147
decf$$/delete-acons, 79
decf$$$, 148
decf$$$-after, 148
decf$$$/delete-acons, 79
decf$&, 145
decf$&-after, 145
decf$&/delete-acons, 79
decf%, 149
decf%-after, 149
decf%/delete-acons, 79
decf&, 144
decf&-after, 144
decf&/delete-acons, 79
declared-numeric operators, 143
decrementing, the value of an association-list pair, 78
defem, 82
define-class, 83-84, 336, 359, 362, 381, 388

GBBopen 1.5 Reference

Index

define-event-class, 272, 295, 394-395, 410
define-ks, 587-590, 606
define-ks-class, 591-594
define-ksa-class, 595-598, 621
define-module, 30-32, 53, 59
define-relative-directory, 33-34
define-repl-command, 13-14, 15
define-root-directory, 31, 35-36
define-space-class, 438-441, 463
define-streamer-node, 573-574
define-unit-class, 330-333, 362, 369, 377, 421
defining

a class, 83

a compiler macro, 82

a directory, 35

a knowledge source, 587, 600

a ks class, 591

a ksa class, 595

a module, 30, 59

a relative directory, 33

a REPL command, 13

a space class, 438

a streamer node, 573

a unit class, 330

an event class, 394
defmethod

undoing, 128
defsystem packages, 21
delete-all-space-instances, 444
delete-blackboard-repository, 442-443, 447,451
delete-et, 208
delete-from-eset, 207
delete-instance, 324, 327, 334-335, 353, 474, 495
delete-instance-event, 334, 442, 444, 445,461,

507

delete-space-instance, 445-446, 471, 492
deleted-instance-class, 336
deleted-unit-instance, 336, 337
deleting

a knowledge source, 627

a space instance, 445

a unit instance, 334

a unit instance, class of deleted instance, 336

all space instances, 444

an item from a list, 80, 81
delq, 80
delg-one, 81
describe-all-polling-functions, 300
describe-blackboard-repository, 447
describe-event-printing, 396-397
describe-instance, 338-339, 340
describe-instance-slot-value, 340
describe-ks, 599
describe-module, 37-38
describe-patches, 39
describe-space-instance, 448
describe-space-instance-storage, 449

GBBopen 1.5 Reference
Index

describe-unit-class, 341-343
dimension name, 630
dimension type, 630

boolean, 629

enumerated, 630

ordered, 634
dimension value, 630

comparison-type, 629

incomposite, 632

of a unit instance, 354, 356

type, 630
dimension values

inheritance, 332, 440, 593, 597
dimensional extent, 344
dimensional extent, of a space instance, 630
dimensions

inquiring, of a space instance, 344

inquiring, of a unit class, 344

of a space instance

changing, 432

dimensions-of, 344-345, 457
direct-link-definition, 379
direct-nonlink-slot-definition, 346
direct-slot-definition, 141
direct-slot-definition-class, 141
directories, of a module, 51
directory

defining relative, 33

defining root, 35

getting pathname from name, 42

getting root-directory pathname from name, 46

relative, 636

root, 636

show defined, 56
disable-event-printing, 398-399
disabling

compiler macros, 62

event printing, 398

event signaling, 414

mirroring, 561

optimizations, 63

retrieval statistics gathering, 499
disjunctive pattern, 472, 476, 483, 493, 553
displaying

retrieval statistics, 497, 498
do-instances-of-class, 470-471, 503, 504
do-instances-on-space-instances, 472-474
do-queue, 521
do-sorted-instances-of-class, 475
do-space-instances, 450
do-until, 85
do-while, 86
documentation, 32, 34, 36
documentation, GBBopen Hyperdoc access, 318
dosequence, 87
dosublists, 88
dotted list, 630

645

obtaining the length of, 89

pattern values, 473, 477, 484, 494, 554
dotted-length, 89
double format

IEEE 754, 143
double-float

declared-numeric operators, 143
double-float, 331, 432, 439, 456, 592, 596, 629
double-metaphone, 316
doubly-linked queue, 635
duplicating

an instance, 358, 361

unit instance

specifying unduplicated slots, 371

duration

formatting, 165, 167, 192, 194

parsing, 188

ecase-using, 90-91
effective-link-definition, 380
effective-nonlink-slot-definition, 347
effective-slot-definition, 141
effective-slot-definition-class, 141
element
pattern value, 473, 477, 484, 494, 554
elements
on a queue, printing, 536
Emacs
GBBopen Hyperdoc access, 7
Meta-?, 7
empty-blackboard-repository-p, 451
enable-event-printing, 400-401
enabling
event signaling, 415
mirroring, 562
retrieval statistics gathering, 498
encode-date-and-time, 168—-170
encode-time-of-day, 171, 270, 279, 280
end value, of an interval, 422, 424
ends (ordered-dimension pattern operator), 473, 476,
484, 494, 554
ends$ (ordered-dimension single-float pattern
operator), 473, 477, 484, 494, 554
ends$$ (ordered-dimension double-float pattern
operator), 473, 477, 484, 494, 554
endssss (ordered-dimension long-float pattern
operator), 473, 477, 484, 494, 554
endss$s (ordered-dimension short-float pattern
operator), 473, 477, 484, 494, 554
ends% (ordered-dimension pseudo-probability pattern
operator), 473, 477, 484, 494, 554
endsé& (ordered-dimension fixnum pattern operator),
473,476,484, 494, 554
ensure-class, 141
ensure-class—-using-class, 141
ensure-finalized-class, 92
ensure—generic-function-using-class, 141

646

ensure-ks, 600-601
ensure-list, 82, 93, 139
enumerated dimension, 630
pattern operators, 473, 477, 484, 494, 554
eq, 331, 432, 439, 456, 592, 596, 629
eql, 331, 432, 439, 456, 592, 596, 629
eql-specializer, 141
egl-specializer-object, 141
equal, 331, 432, 439, 456, 592, 596, 629
equalp, 331, 432, 439, 456, 592, 596, 629
eqv (boolean-dimension pattern operator), 473, 477,
484, 494, 554
error-condition, in with-error-handling, 132
error-message, in with-error-handling, 132
ESET, 205
ET, 205
evenp$, 146
evenp$$, 147
evenp$$$, 148
evenp$&, 145
evenp%, 149
evenp&, 144
event, 630
collecting trigger unit instances of, 584
signaling, 409
trigger event of, 619
trigger unit instance of, 620
event class, 630
defining/redefining, 394
extended event-class specification, 631
standard-event-instance, 411
subevents, 637
event classes, graph of, 391
event function, 630
adding, 392
removing, 405
removing all, 403
required arguments, 409
event instance, 630
event metaclass, 631
event printing
disabling, 398
enabling, 400
printing information about, 396
resuming, 407
suspending, 412
events
change—-instance—-class—-event, 325
control-shell-restarted-event, 617
control-shell-started-event, 622
delete—instance-event, 334, 442, 444, 445, 461,
507
disabling signaling of, 414
enabling signaling of, 415
generated by
add-instance-to-space-instance, 430
change-class, 325

GBBopen 1.5 Reference
Index

change-space-instance, 432
delete-all-space-instances, 444
delete-blackboard-repository, 442
delete-instance, 334
delete-space-instance, 445
linkf, 382
linkf!, 384
load-blackboard-repository, 507
make-duplicate-instance, 358
make-duplicate-instance-given-class, 361
make-instance, 364
make-space-instance, 455
remove-instance-from-space-instance, 435,
460
reset-gbbopen, 461
restart-control-shell, 617
start-control-shell, 622
unlinkf, 389
unlinkf-all, 390
instance—added-to-space—-instance—event,
325, 358, 361, 364,430, 455
instance-changed-class—event, 325
instance—-created-event, 3568, 361, 364, 455
instance—-deleted-event, 334, 442, 444, 445,
461, 507

extended unit-class specification, 631
extended unit-classes specification, 631
external-program

closing associated stream, 319

running, 321

signaling, 320

terminating, 320
extract-lambda-list, 141
extract-specializer—names, 141

false (boolean-dimension pattern operator), 473, 477,
484,494, 554
fceiling$, 146
feceiling$$, 147
fceiling$$$, 148
fceiling$&, 145
fceiling%, 149
fceiling&, 144
feature, 631
ffloor$, 146
flloor$$, 147
flloor$$$, 148
flloor$&, 145
ffloor%, 149
ffloor&, 144

instance-removed-from-space-instance-event,filter-instances, 121, 476-478, 636

325,334,432, 435, 442, 444, 445, 460, 461, 474,
495, 507
link-event, 325, 358, 361, 364, 382, 384, 455
nonlink-slot-updated-event, 325, 358, 361,
364, 455
that triggered a KSA, 626
unlink-event, 325, 334, 384, 389, 390, 442, 444,
445,461, 507
evin-printer, 393, 402, 403, 405
evin-printv, 402
executable knowledge-source activation, 631
executed knowledge-source activation, 631
executed KSAs, of a control shell, 602
executed-ksas-of, 602
execution cycle, of a KSA, 603
execution function, of a KS, 588
execution-cycle-of, 603
exit-control-shell, 604
exiting, agenda shell, 588, 604
exp%, 153
expand, a point into an interval, 420
expand, an interval, 419, 426
expand-interval, 417, 419
expand-point, 420
expand-point$, 420
expand-point$$, 420
expand-point$$$, 420
expand-point$&, 420
expand-point%, 420
expand-point&, 420
extended event-class specification, 631

GBBopen 1.5 Reference
Index

filter-instances
pattern specification, 476
filtering, pattern-based, of unit instances, 476
finalize-inheritance, 141
finalizing, a class, 92
find statistics
collecting and displaying, 498
disabling collection of, 499
displaying, 497
find-all-instances-by-name, 479-480
find-instance-by-name, 128, 328, 357, 360, 363,
481-482, 485, 497499, 515, 536, 548, 549, 557,
602,611,614
find-instances, 121, 483-487, 497499, 550, 551, 555,
636
find-instances
pattern specification, 483, 488
find-instances-of-class, 488—-489
find-ks-by-name, 605
find-method-combination, 141
find-space-instance-by-path, 344, 430, 434, 445,
452, 459, 460, 474, 485, 495, 547, 550, 551, 555,
558, 563
find-space-instances, 453—454
find-streamer-node, 575
finish-patch, 28, 40-41, 57
first element
of a list, returning, 121
of a queue, returning, 522
first-queue-element, 522, 528
fixnum, 632

647

declared-numeric operators, 143
fixnum, 331, 432, 439, 456, 592, 596, 629
floating-point formats

IEEE 754, 143
floating-point type declarations

Common Lisp implementation notes, 143
floor$, 146
floor$$, 147
floor$$$, 148
floor$&, 145
floor%, 149
floor&, 144
form, 631
forward-referenced-class, 141
fround$, 146
fround$$, 147
fround$$$, 148
fround$&, 145
fround%, 149
fround&, 144
ftruncate$, 146
ftruncate$$, 147
ftruncate$$$, 148
ftruncate$&, 145
ftruncate%, 149
ftruncate&, 144
full-date-and-time, 172175, 545
funcall-in-package, 15
funcallable-standard-class, 141
funcallable-standard-instance-access, 141
funcallable-standard-object, 141
function, 632

event, 630

required arguments, 409

periodic, spawning, 294

periodic, terminating, 272

predicate, 635

scheduled, canceling scheduling, 296

scheduled, context, 284

scheduled, creating, 273

scheduled, invocation time, 285

scheduled, marker, 286

scheduled, name, 288

scheduled, obtaining all, 271

scheduled, repeat-interval value, 290

scheduled, scheduling, 278, 281

scheduled, scheduling relative to now, 281

scheduled, test, 287, 289
function designator, 632
function object, 632, 632

GBBopen
Hyperdoc, 7
access from Emacs, 7
displaying an entity, 318
version string, 350

648

gbbopen-commands . 1isp, personal initializations
file, 6

gbbopen-direct-slot-definition, 348

gbbopen-effective-slot-definition, 349

gbbopen-implementation-version, 350

gbbopen-init.lisp, personal initializations file, 6,
21

gbbopen-modules, personal module definitions, 7

generalized boolean, 632

generalized reference, 632

generic function, 632

generic-function-argument-precedence-order,
141

generic-function-declarations, 141

generic-function—-lambda-1list, 141

generic-function-method-class, 141

generic-function-method-combination, 141

generic-function-methods, 141

generic-function—-name, 141

get-directory, 42-43

get-et, 208, 209-210

get-patch-description, 4445

get-root-directory, 46

get-universal-time, 161, 163, 172, 176, 177, 179, 180,
195

handling errors, 132
hash-table

coerce values to a vector, 100
hibernate-thread, 245
http-date-and-time, 176
Hyperdoc, on line, 7

displaying an entity, 318
hyperspec.el, 7

ie—equalp (enumerated-dimension pattern operator),
473,477,484, 494, 554

IEEE 754 floating-point formats, 143

ignoring errors, 132

ILISP, 7

in-eset, 205, 207, 211

incf-after, 94

incf-after$, 94

incf-after$$, 94

incf-after$$$, 94

incf-after$&, 94

incf-after%, 94

incf-after&, 94

incf$, 146

incf$-after, 146

incf$$, 147

incf$$-after, 147

incf$$$, 148

incf$$$-after, 148

incf$&, 145

incf$&-after, 145

incf%, 149

GBBopen 1.5 Reference
Index

incf%-after, 149
incf&, 144, 521, 526
incf&-after, 144
incomplete unit instance, 632
incomplete-instance-p, 351
incomposite dimension value, 632
incrementing, the value of an association-list pair, 113
infinite-interval, 421
infinity, interval end value, 473, 477, 484, 494, 554
inheritance
unit-class options, 332, 440, 593, 597
initial space instances
inheritance, 332, 440, 593, 597
initial-class-instance-number, 352
initialization argument list, 632
gbbopen-commands . 1isp file, 6
gbbopen-init.lisp file, 6, 21
gbbopen-modules directory files, 7
shared-gbbopen-modules directory files, 7
initialize-saved/sent-instance, 505-506
insert-on-queue, 523
inserting an item
into a sorted list, 104
into an ordered queue, 523
onto a queue, 523
instance, 632
duplicating
unduplicated slots, 371
event, 630
saving and sending
specifying omitted slots, 510
space instance, 636
unit, 637, 638
writing deletion to a streamer, 548
writing to a streamer, 549, 550
instance name, 632
instance—-added-to-space-instance-event, 325,
358, 361, 364, 430, 455
instance-changed-class-event, 325
instance-created-event, 358, 361, 364, 455
instance-deleted-event, 334, 442, 444, 445, 461,
507
instance-deleted-p, 353
instance-dimension-value, 354-355
instance-dimension-values, 356
instance-name comparison test
inheritance, 332, 440, 593, 597
instance-name-of, 128, 357
instance-removed-from-space—-instance-event,
325,334, 432, 435, 442, 444, 445, 460, 461, 507
intern-eqgl-specializer, 141
internal time units, formatting, 167, 194
internet-text-date-and-time, 177-178
interval, 632
copying, 418
expanding, 419, 426
making, 425

GBBopen 1.5 Reference
Index

obtaining the end value, 422, 424
obtaining the start and end values, 424
obtaining the start value, 423, 424
pattern value, 473, 477, 484, 494, 554
shifting, 427, 428
interval-end, 422
interval-start, 423
interval-values, 424
invoking an external program, 321
is (enumerated-dimension pattern operator), 473,
477,484, 494, 554
is—eq (enumerated-dimension pattern operator), 473,
477,484, 494, 554
is—eql (enumerated-dimension pattern operator),
473,477,484, 494, 554
is—equal (enumerated-dimension pattern operator),
473,477,484, 494, 554
is08601-date-and-time, 179
iteration
do-until, 85
do-while, 86
dosequence, 87
dosublists, 88
until, 130
while, 131

journal, 632
loading from a file, 567
writing to a file, 569
journal streamer, 632
associated stream of, 552
check if open, 544
closing, 542
journaling, 632
a nonlink-slot update, 557
added links, 556, 559
adding an instance to a space instance, 547
an instance, 549
deleting an instance, 548
instances of a unit class, 551
instances on a space instance, 553
multiple instances, 550
removing an instance from a space instance, 558

keyword symbol, 633
kill-external-program, 320
kill-network-stream-server, 576
kill-periodic-function, 272, 295
kill-thread, 246, 257, 313
killing
a network-stream server, 576
killing a thread, 246
knowledge source, 633
activation, 633
defining/redefining, 587, 600
execution, 633
of a KSA, 608

649

undefining, 627
knowledge source execution
aborting, 582
KS, see knowledge source
activation, 633
enabled, 607
execution, 633
execution function, 588
finding by name, 605
of a KSA, 608
printing information about, 599
ks, 593, 606
KS activation
executable, 631
executed, 631
obviated, 634
pending, 635
ks class, 633
defining/redefining, 591
ks-enabled-p, 607
ks-of, 608
KSA, see knowledge-source activation
activation cycle of, 583
collecting trigger unit instances of, 584
executable, 631
executed, 631
execution cycle of, 603
KS of, 608
obviated, 634
obviation cycle of, 612
pending, 635
rating of, 616
trigger event of, 619
trigger unit instance of, 620
triggering events of, 626
ksa, 597, 609
ksa class, 633
defining/redefining, 595
ksa-queue, 610

last-queue-element, 524, 528
left-leaning red-black tree, see LLRB tree
left-leaning red-black trees, 214
length

of a dotted list, 89

of a queue, 534

testing a list for length = 1, 95

testing a list for length = 2, 96

testing a list for length > n, 97

testing a list for length > 1, 98

testing a list for length > 2, 99
link, 633

adding, 382, 384

adding after removing, 384

definitions, checking consistency of, 377

removing, 389, 390

writing to a streamer, 556, 559

650

link slot, 633, 633
place, 633
link-event, 325, 358, 361, 364, 382, 384, 455
link-instance-of, 381, 633
link-pointer object, 633
link-ptr-with-value, 381, 388
link-ptr-class, 381
link-ptr-with-value class example, 381, 388
link-slot-p, 387
linkf, 382-383
links
checking consistency of, 375
list
assuring, 93
dotted, 630
initialization arguments, 632
pattern values, 473, 477, 484, 494, 554
proper, 635
property list, 635
pushing new elements onto, 112
returning first element of, 121
shuffling, 119
splitting into two sublists, 122
testing length = 1, 95
testing length = 2, 96
testing length > n, 97
testing length > 1, 98
testing length > 2, 99
list-length-1-p, 95
list-length-2-p, 96
list-length>, 97
list-length>1, 98
list-length>2, 99
LLRB tree, 633
applying a function to entries of, 222
creating, 221
deleting, 216
entities count, 215, 218
inserting, 219
predicate, 217
retrieval, 219
llrb-tree-count, 215
llrb-tree-delete, 216
lIrb-tree-p, 217
llrb-tree-test, 218
llrb-tree-value, 219-220
In%, 154
load-blackboard-repository, 507-509
load-journal, 567-568
load-module, 47-48
load-module-file, 49-50
loaded module, checking for, 52
loaded patch, checking for, 55
loading
:module-manager module, 21
a journal from a file, 567
a module, 16, 18, 26, 47

GBBopen 1.5 Reference
Index

controlling autorun forms, 24
patches only, 25

a module file, 49

installation-wide, shared module definitions, 7

the blackboard repository from a file, 507

user-specific module definitions, 6, 7, 21

user-specific, REPL command definitions, 6
local hostname

of an open socket stream, 307
local port

of an open socket stream, 307
local-hostname-and-port, 307
lock, 633

acquiring, 263

blackboard repository, 465

creating, 249, 250

non-recursive, 633

recursive, 635

releaseing temporarily, 267
lock, held by current thread, 262
long-float, 331,432, 439, 456, 592, 596, 629

Macintosh Common Lisp
floating-point type declarations, 143
macroexpand
compiler macro, 73, 74
make, an interval, 425
make-broadcast-streamer, 543
make-condition-variable, 247-248
make-duplicate-instance, 358-360

make-duplicate-instance-changing-class, 361-363

make-eset, 205, 207,211, 212
make-et, 208, 209, 213
make-hash-values-vector, 100
make-instance, 324, 327, 335, 353, 359, 362,
364-365, 414, 415, 561-563
make-instances-of-class-vector, 490
make-interval, 416, 422-424, 425
make-journal-streamer, 569-570
make-keyword, 101
make-llrb-tree, 221
make-lock, 249
make-method-lambda, 141
make-passive-socket, 305, 308
make-queue, 525
make-recursive-lock, 250
make-scheduled-function, 171, 273-274, 279, 280,
282

make-space-instance, 365, 440, 455-457, 464
making

a condition variable, 247

a keyword symbol, 101

a lock, 249, 250

a queue, 525

a scheduled function, 273

a space instance, 455

a thread, 254, 255

GBBopen 1.5 Reference
Index

a unit instance, 364

an ESET, 212

an ET, 213
map-dependents, 141
map-instances-of-class, 491-492

map-instances-on-space-instances, 328, 450, 458,

493-495, 497499, 636

map-instances-on-space-instances

pattern specification, 472, 493
map-llrb-tree, 222
map-queue, 526

map-sorted-instances-of-class, 496

map-space-instances, 458
maphash

sorted, 123
mapping, pattern-based

of unit instances, 472, 493
max$, 146
max$$, 147
max$$$, 148
max$&, 145
max%, 149
max&, 144
memgq, 102, 521, 526
message-log-date-and-time, 180
Meta-?, Emacs key binding, 7
metaclass

event, 631
metaobject, 634
metaobject, 141
method

undefining, 128
method-function, 141
method-generic—-function, 141
method-lambda-1list, 141
method-specializers, 141
min$, 146
min$$, 147
min$$$, 148
min$&, 145
min%, 149
min&, 144
minimum-ksa-execution-rating, 588
minusp$, 146
minusp$$, 147
minusp$$$, 148
minusp$&, 145
minusp%, 149
minusp&, 144
mirroring

adding, 539

disabling, 561

enabling, 562

removing, 560
mod$, 146
mod$$, 147
mod$$$, 148

651

mod$&, 145
mod%, 149
modé&, 144
module, 634, 636
:agenda-shell, 581
:double-metaphone, 315
:gbbopen-core, 323
:gbbopen-tools, 61, 143
:gbbopen-tools, 214
:module-manager, 21
loading, 21
:module-manager, 65, 109, 158, 162, 164, 183
:network-streaming, 571
:os—-interface, 317
:polling-functions, 298
:portable-sockets, 304
:portable-threads, 224
:portable-threads, 268
:queue, 519
:streaming, 538, 566
compiling, recompiling, and loading, 16, 18, 26
creating missing directories, 23
patches only, 25
defining or redefining, 30, 59
describing, 37
directories, 51
directory, 16, 18, 26
loaded, checking for, 52
loading, 47
:module-manager module, 21
loading a file of, 49
patching, 28, 40, 53, 57
printing information about, 37
module definitions, loading installation-wide, shared, 7
module definitions, loading user-specific, 6, 7, 21
module-directories, 51
module-loaded-p, 52
MOP entities, 141
multiple-value-setf, 103

name-based retrieval, 479, 481
namestring, 634
nearly-forever-seconds, 251, 251, 253
network streamer, 634

accepting connections, 576, 579

associated stream of, 552

check if open, 544

closing, 542

connection server, 576, 579

finding or opening, 578

opening a connection, 578
network streaming, 634

a nonlink-slot update, 557

added links, 556, 559

adding an instance to a space instance, 547

an instance, 549

deleting an instance, 548

652

instances of a unit class, 551
instances on a space instance, 553
multiple instances, 550

removing an instance from a space instance, 558

network-stream server

killing, 576

starting, 579
network-stream-server-running-p, 577
nexpand-interval, 426
next-class-instance-number, 326, 366
next-queue-element, 527
node

streamer, 637
non-instance-event, 395
non-keyword symbol, 634
nonlink-slot update

writing to a streamer, 557

nonlink-slot-updated-event, 325, 358, 361, 364,

455

not (pattern-negation operator), 472, 476, 483, 493,

553
nshift-interval, 427
nsorted-insert, 104
nth-queue-element, 528
number, 331, 432, 439, 456, 592, 596, 629
numeric value
bounding within a range, 67

object

link-pointer, 633

saving, 511

sending, 511

slot, 636
object-address, 105, 108
obviated knowledge-source activation, 634
obviated KSAs, of a control shell, 611
obviated-ksas-of, 611
obviation-cycle-of, 612
oddp$, 146
oddp$$, 147
oddp$$$, 148
oddp$&, 145
oddp%, 149
oddp&, 144
Offset Universal Time, 634
offset universal time, 197

converting to universal time, 200
omitted-slots-for-saving/sending, 510
on-queue-p, 529
open-connection, 309
open-network-streamer, 540, 543, 546, 578
open-streamer-p, 544
opening

a socket stream connection, 309, 314
optimizations

declaring full, 135

disabling, 63

GBBopen 1.5 Reference

Index

or (disjunctive-pattern operator), 472, 476, 483, 493,
553

ordered dimension, 634

pattern operators, 472, 473, 476, 483, 484, 493, 553

ordered queue, 634

ordered-ksa-queue, 525, 613

ordered-queue, 530, 634

ordering dimension, 634

ordering dimension, of a series-composite dimension,
636

ot2ut, 200

overlaps (ordered-dimension pattern operator), 473,
476,484, 494, 554

overlaps$ (ordered-dimension single-float pattern
operator), 473, 477, 484, 494, 554

overlaps$$ (ordered-dimension double-float pattern
operator), 473, 477, 484, 494, 554

overlaps$$s (ordered-dimension long-float pattern
operator), 473, 477, 484, 494, 554

overlaps$& (ordered-dimension short-float pattern
operator), 473, 477, 484, 494, 554

overlaps$ (ordered-dimension pseudo-probability
pattern operator), 473, 477, 484, 494, 554

overlapsé& (ordered-dimension fixnum pattern
operator), 473, 476, 484, 494, 554

package
designator, 634
parent-of, 459
parse-date, 181-183
parse-date-and-time, 184-187
parse-duration, 175, 188-189
parse-time, 190-191
passive socket, closing, 306
passive socket, making, 308
patch, 634
checking if loaded, 55
describing, 39
description, getting, 44
patch, 53-54
patch-loaded-p, 55
patching
a module, 28, 40, 53, 57
path
expression, 634
match characters, 392, 396, 398, 400, 407, 412,
450, 453, 458, 539, 560
space instance, 637
space instances expression, 634
pathname, 635
designator, 635
pattern
:all, 472,483, 493, 553
conjunctive, 472, 476, 483, 493, 553
disjunctive, 472, 476, 483, 493, 553
negation, 472, 476, 483, 493, 553
retrieval, 636

GBBopen 1.5 Reference
Index

specification, 472, 476, 483, 493, 553
filter-instances, 476
find-instances, 483, 488
map-instances-on-instances, 472, 493
stream-instances-on-instances, 553

t, 472,476, 483, 493, 553

value, 473, 477, 484, 494, 554

pattern-based
filtering, 476
mapping, 472, 493
retrieval, 483
streaming, 553
pause-scheduled-function-scheduler, 275, 292
pending knowledge-source activation, 635
pending KSAs, of a control shell, 614
pending-ksas-of, 536, 614
periodic function

spawning, 294

terminating, 272
place

decrementing numeric value of, 77

incrementing numeric value of, 94

link slot, 633

sorting sequence value of, 124, 125

plusp$, 146
plusp$$, 147
plusp$$$, 148
plusp$&, 145
plusp%, 149
plusp&, 144
point

expanding into an interval, 420

pattern value, 473, 477, 484, 494, 554

polling function

adding a, 299

called by the control shell, 303

printing information about, 300

removing a, 301

removing every, 302

running, 303

POSIX-style, condition variable, 629

pprob2prob, 155

predicate function, 635

pretty-duration, 192-193, 340

pretty-run-time-duration, 194

previous-queue-element, 531

print-instance-slot-value, 106, 107, 381, 388

print-instance-slots, 106, 107, 381, 388

print-object-for-saving/sending, 503, 504, 511-512,
513

print-slot-for-saving/sending, 513

printing

a slot, for saving, 513

a slot, for sending, 513

information about
a KS, 599
a module, 37

653

a unit class, 341
event printing, 396
polling functions, 300
space instance, 448, 449
space instance, as a unit instance, 338, 340
the blackboard repository, 447
unit instance, 338, 340
queue, elements of, 536
printv, 28, 40, 53, 57, 64, 108-109, 132
printvot, 201
prob2pprob, 156
probability
converting from a pseudo-probability, 155
converting to a pseudo-probability, 156
proper list, 635
property list, 635
removing property from, 115, 116
property, of a property list, 635
pseudo-probability
converting from a probability, 156
converting to a probability, 155
division, 151
In (natural log), 154
multiplication, 150

pseudo-probability, 331,432,439, 456, 592, 5696

pseudo-probability entities, 149
push-acons, 110
pushing

a new pair onto an association list, 78, 111, 113

a pair onto an association list, 110

new elements onto a list, 112
pushnew-acons, 111
pushnew-elements, 112
pushnew/incf-acons, 113-114
pushnew/incf$-acons, 114, 146
pushnew/incf$$-acons, 114, 147
pushnew/incf$$$-acons, 114, 148
pushnew/incf$&-acons, 114, 145
pushnew/incf%-acons, 114, 149
pushnew/incf&-acons, 114, 144

queue, 635
applying a function to elements of, 526
determining membership on, 529
elements, applying a function to, 526
elements, operating on all elements of, 521
inserting an element on, 523
making a, 525
obtaining the length of, 534
operating on all elements elements of, 521
ordered, 634
printing elements of, 536
removing all elements from, 520
removing an element from, 535
returning first element, 522
returning last element, 524
returning next element, 527

654

returning nth element, 528

returning previous element, 531
queue, 532
queue element, 635

determining queue membership of, 529
queue-element, 533
queue-length, 534
queued streaming, 563
Quicklisp, 4

rating

of a KSA, 635
rating, 615
rating-of, 525, 616
read-queued-streaming-block, 545
reader-method-class, 141
reading

a journal from a file, 567

recompiling, a module, and also loading module, 16, 18,

26

creating missing directories, 23

patches only, 25
recursive lock, 635

acquiring, 263

releasing temporarily, 267
redefining

a class, 83

a directory, 35

a knowledge source, 587, 600

a ks class, 591

a ksa class, 595

a module, 30, 59

a relative directory, 33

a space class, 438

a streamer node, 573

a unit class, 330

an event class, 394

classes without warnings, 65

functions without warnings, 65
reference, generalized, 632
relative directory, 636

defining, 33

show defined, 56
releasing

a lock, temporarily, 267

a recursive lock, temporarily, 267
remote hostname

of an open socket stream, 310
remote port

of an open socket stream, 310
remote-hostname-and-port, 310
remove-all-event-functions, 403-404
remove-all-polling-functions, 302
remove—dependent, 141
remove-direct-method, 141
remove-direct-subclass, 141
remove-event-function, 405406

GBBopen 1.5 Reference

Index

remove-from-broadcast-streamer, 546
remove-from-queue, 535
remove-instance-from-space-instance, 435, 450,
458, 460, 474, 495
remove-mirroring, 560
remove-polling-function, 301
remove-properties, 115
remove-property, 116
removing property, from a property list, 115, 116
REPL command, 636
:cm, 27
:commands (Show extended-REPL commands), see
the GBBopen Tutorial
:di, 339
:ds (Describe object), see the GBBopen Tutorial
:dsbb, 447
«dsi, 448
:dsis, 449
:exit (Exit Lisp), see the GBBopen Tutorial
fi, 482
fsi, 452
:Im, 48
:JImf, 50
:ot, 200
:pa (Set current package), see the GBBopen Tutorial
:pic, 471, 492
:systems (Show all systems), see the GBBopen
Tutorial
:undefine-system (Undefine a system), see the
GBBopen Tutorial
qut, 170, 175
REPL command definitions, loading user-specific, 6
REPL, top-level (keyword) commands, 3, 4
report-find-stats, 497
reset-gbbopen, 461-462
reset-unit-class, 367
restart, agenda shell, 617
restart-control-shell, 617-618
restart-scheduled-function-scheduler, 276
restoring
the blackboard repository from a file, 507
resume-event-printing, 407-408
resume-scheduled-function-scheduler, 277
retention, of unit instances
inheritance, 332, 440, 593, 597
retrieval
all unit instances of a unit class, 488
name-based, of unit instances, 479, 481
pattern, 636
pattern-based, of unit instances, 483
statistics, collecting and displaying, 498
statistics, disabling collection of, 499
statistics, displaying, 497
root directory, 636
defining, 35
show defined, 56
round$, 146

GBBopen 1.5 Reference
Index

round$$, 147
round$$$, 148
round$&, 145
round%, 149
round&, 144
run-external-program, 319, 320, 321
run-in-thread, 252
run-polling-functions, 303, 618, 625
running-p

a network-stream server, 577

safety, disabling optimizations, 63
save-blackboard-repository, 514-515
saving
an object, 511
instance
specifying omitted slots, 510
the blackboard repository to a file, 514
schedule-function, 171,271, 278-280
schedule-function-relative, 281-283
scheduled function
canceling scheduling, 296
context, 273, 278, 281
creating, 273
marker, 273, 278, 281
name, 273
repeat interval, 278, 281
scheduler, checking paused status, 292
scheduler, checking running status, 293
scheduler, pausing, 275
scheduler, restarting, 276
scheduler, resuming, 277
scheduling, 278
scheduling relative to now, 281
scheduled functions
obtaining all, 271
scheduled-function-context, 284
scheduled-function-invocation-time, 285
scheduled-function-marker, 286
scheduled-function-marker-test, 287
scheduled-function-name, 288
scheduled-function-name-test, 289
scheduled-function-repeat-interval, 274, 290-291
scheduled-function-scheduler-paused-p, 275, 277,
292
scheduled-function-scheduler-running-p, 293
scheduling
a scheduled function, 278
a scheduled function relative to now, 281
canceling a scheduled function, 296
search trees, 214
searching
for an entry in an association list, 66
for an item in a list, 102, 105
for an item in an eset, 211
for an value in an et, 209
sending

655

an object, 511
instance
specifying omitted slots, 510
sequence-composite dimension
value, 636
series-composite dimension
ordering dimension, 636
value, 636
set
pattern value, 473, 477, 484, 494, 554
set, auto-transitioning, 205
set-composite dimension
value, 636
set-equal, 117
set—funcallable-instance—function, 141
set-ot-base, 202—203
sets-overlap-p, 118
shared-gbbopen-modules, shared module
definitions, 7
shift, an interval, 427, 428
shift-interval, 428
short-float, 331,432, 439, 456, 592, 596, 629
show-defined-directories, 56
show-queue, 536, 602, 611, 614
shrink-vector, 120
shuffle-list, 119
shutdown-socket-stream, 311
signal-event, 272, 282, 295, 409
signaling
an event, 409
signaling an external program, 320
signaling, condition variable
all blocked threads, 240
one blocked thread, 241
single format
IEEE 754, 143
single-float
declared-numeric operators, 143
single-float, 331,432, 439, 456, 592, 596, 629
sleep, 251,253,268
sleep-nearly-forever, 253
SLIME, 7
REPL keyword commands, 3, 4
slot, 636
printing for saving, 513
printing for sending, 513
slot, link, see link slot
slot-boundp-using-class, 141
slot-definition, 141
slot-definition-allocation, 141
slot-definition-initargs, 141
slot-definition-initform, 141
slot-definition-initfunction, 141
slot-definition—-location, 141
slot-definition—-name, 141
slot—-definition-readers, 141
slot-definition-type, 141

656

slot-definition-writers, 141
slot-makunbound-using-class, 141
slot-value-using-class, 141
socket
accepting connections, 312
connection server, 312
passive, 634
passive, closing, 306
passive, making, 308
socket stream
accept connection, 305
local hostname, 307
local port, 307
opening, 314
remote hostname, 310
remote port, 310
shutdown, 311
socket stream connection
opening, 309
sole-element, 121
sole-trigger-event-of, 619
sole-trigger-instance-of, 620
sorted list
inserting an item into, 104
sorted-maphash, 123
sortf, 124
space
class, 636
instance, 636
space class
defining/redefining, 438
standard-space-class, 463
space instance
adding unit instance to, 430
allowed unit classes, 431
applying a function to unit instances on, 493
changing
allowed unit classes, 432
dimensions, 432
storage, 432
creating, 455
deleting, 444, 445
deleting all, 442, 461
dimensional extent, 630
finding children of, 434
finding dimensions of, 344
finding parent of, 459
on which a unit instance resides, 368
operating on unit instances on, 472
path, 637
printing information about, 447-449
removing all unit instances from, 435
removing unit instance from, 460
retrieving unit instances on, 483
returning all, 453
storage specification, 637
space-instances-of, 368, 474, 495

GBBopen 1.5 Reference
Index

spawn-form, 254
spawn-periodic-function, 269, 272, 294-295
spawn-thread, 255, 257, 274
specializer, 141
specializer-direct—-generic—-functions, 141
specializer-direct-methods, 141
splitting a list, 122
splitting-butlast, 122
stable-sortf, 125
standard-accessor-method, 141
standard-class, 84
standard-direct-slot-definition, 141
standard-effective-slot-definition, 141
standard-event-class, 395, 410, 411, 630
standard-event-instance, 411, 630
standard-gbbopen-instance, 126, 637
standard-instance-access, 141
standard-ksa-class, 621
standard-link-instance, 381
standard-link-pointer, 388
standard-reader-method, 141
standard-slot-definition, 141
standard-space-class, 440, 463, 636
standard-space-instance, 370, 388, 464, 471, 492,
636
standard-unit-class, 332, 369, 370, 388, 463, 593,
597,621, 637
standard-unit-instance, 370, 464, 533, 638
standard-writer—-method, 141
start value, of an interval, 423, 424
start-connection-server, 312-313
start-control-shell, 303, 622625
start-network-stream-server, 579
start-patch, 28, 40, 57-58
starting
a connection server, 312
a network-stream server, 579
agenda shell, 622
control shell, 622
starts (ordered-dimension pattern operator), 473,
476,484,494, 554
starts$ (ordered-dimension single-float pattern
operator), 473, 477, 484, 494, 554
startss$$ (ordered-dimension double-float pattern
operator), 473, 477, 484, 494, 554
starts$s$$ (ordered-dimension long-float pattern
operator), 473, 477, 484, 494, 554
starts$es (ordered-dimension short-float pattern
operator), 473, 477, 484, 494, 554
starts% (ordered-dimension pseudo-probability
pattern operator), 473, 477, 484, 494, 554
startsé& (ordered-dimension fixnum pattern
operator), 473, 476, 484, 494, 554
startup
calling a function in another package, 15
compiling a module and also loading, 16, 18
defining REPL commands, 13

GBBopen 1.5 Reference
Index

setting current package, 16, 18
startup-module, 16-17
startup.lisp file, 21
stepping options, agenda shell, 623
stopping, agenda shell, 588, 604
storage

of a space instance

changing, 432

storage specification, 637
store-value, 71
stream, closing external program, 319
stream-add-instance-to-space-instance, 547
stream-delete-instance, 548
stream-instance, 549
stream-instances, 550
stream-instances-of-class, 551
stream-instances-on-space-instances, 553-555
stream-instances-on-space-instances

pattern specification, 553
stream-link, 556
stream-nonlink-slot-update, 557
stream-of, 552

stream-remove-instance-from-space-instance,

stream-unlink, 559
streamer, 637
add to broadcast streamer, 540
associated stream of, 552
broadcast, 629
check if open, 544
closing, 542
journal, 632
network, 634
reading queued-streaming block, 545
remove from broadcast streamer, 546
streamer node, 637
defining/redefining, 573
finding by name, 575
streamer queue, 563, 637
clearing, 541
writing, 565
streaming
a nonlink-slot update, 557
added links, 556, 559
adding an instance to a space instance, 547
an instance, 549
deleting an instance, 548
instances of a unit class, 551
instances on a space instance, 553
multiple instances, 550
queued, 563
removing an instance from a space instance, 558
string
double-metaphone indexes, 316
string designator, 637
subversion
obtain working-copy version number, 322
suspend-event-printing, 412-413

558

657

svn-version, 322
symbol

keyword, 633

non-keyword, 634
symbol-value-in-thread, 256
system-name, keyword symbol, 637

t pattern, 472, 476, 483, 493, 553
table, auto-transitioning, 205
terminating an external program, 320
thread, 637

awakening, 238

checking state, 261

hibernating, 245

killing, 246

obtaining all, 226

obtaining the current, 244

running a function in, 252

spawning, 254, 255

symbol value in, 256

yielding to other threads, 260
thread-alive-p, 257
thread-holds-lock-p, 262
thread-local binding, 637
thread-name, 258
thread-whostate, 259
thread-yield, 260
threadp, 261
time

duration, formatting, 165, 167, 192, 194

formatting, 176, 177, 179, 180
time zone, 637

abbreviations, 157
time, formatted, 161, 163, 172, 195
trigger event, of a KSA or event, 619

trigger unit instance, of a KSA or event, 584, 620

trigger-events-of, 626
trimmed-substring, 127

true (boolean-dimension pattern operator), 473, 477,

484,494, 554
truncate$, 146
truncate$$, 147
truncate$$$, 148
truncate$&, 145
truncate%, 149
truncate&, 144
type

dimension, 630

dimension value, 630
type-error, 70, 71, 90
types

rating, 615

unbound-value-indicator, 129, 332
undefine-ks, 627
undefining

a knowledge source, 627

658

a method, 128

undefmethod, 128
unduplicated-slot-names, 371
unit

class, 637

unit class

applying a function to instances of, 490, 491, 493,

496
defining/redefining, 330
deleted-unit-instance, 337
extended unit-class specification, 631
extended unit-classes specification, 631
finding dimensions of, 344
instance count, 329
instance number, initial, 352
instance number, next, 366
ks, 606
ksa, 609
ksa-queue, 610
operating on all instances of, 470
operating on instances of, 472, 475
ordered-queue, 530, 613
printing information about, 341
queue, 532
queue-element, 533
retrieving all instances of, 488
standard-ksa-class, 621
standard-space-class, 463
standard-space-instance, 464
standard-unit-class, 369
standard-unit-instance, 370
subclasses, 637
writing instances to a streamer, 551

unit instance, 633, 637, 638

adding links between, 382, 384

adding links between after removing, 384

adding to a space instance, 430

applying a function to, 490, 491, 493, 496

changing class, 325
class of deleted instance, 336
counting, 329
creating, 364
deleting, 334
deleting all, 442, 461
duplicating, 358, 361

unduplicated slots, 371
incomplete, 632
instance number, 352, 366
obtaining a dimension value of, 354
obtaining a dimension values of, 356

obtaining the space instances on which it resides,

368
of a unit class, retrieving all, 488
operating on, 470, 472, 475
pattern-based filtering of, 476
printing information about, 338, 340
removing from a space instance, 460

GBBopen 1.5 Reference

Index

removing links between, 389, 390
retaining, by delete-blackboard-repository
inheritance, 332, 440, 593, 597
retrieving by instance name, 479, 481
retrieving from space instances, 483
saving and sending
specifying omitted slots, 510
specification, 631
storage repositioning, 372
storage specification
boolean, 432, 456
hashed, 432, 456
uniform-buckets, 432, 456
unstructured, 432, 456
streaming adding links between, 556, 559
writing to a streamer, 551, 553
Universal Time, 638
universal time
converting to offset universal time, 204
setting the time base value, 199, 202
unlink-event, 325, 334, 384, 389, 390, 442, 444, 445,
461, 507
unlinkf, 389
unlinkf-all, 386, 390
unschedule-function, 271, 296-297
unscheduling
a scheduled function, 296
until, 130
update-dependent, 141
updating, the value of an association-list pair, 111
use global instance-name counter
inheritance, 332, 440, 593, 597
user-homedir-pathname, 6, 7, 21
ut2Zot, 201, 204
UTF-8, 543

validate-superclass, 141
value, of a symbol in a thread, 256
values, start and end, of an interval, 424
variable symbol, 638
vector

pattern values, 473, 477, 484, 494, 554
version

obtaining GBBopen version string, 350
very-brief-date, 195-196

waiting, on condition variable, 242

waiting, on condition variable, time limited, 243
while, 131

Windows file specification, backslash characters, 3
with-blackboard-repository-locked, 465
with-changing-dimension-values, 372-373
with-error-handling, 64, 132-134
with-events-disabled, 414, 415, 443, 462, 562
with-events-enabled, 415, 443, 462
with-find-stats, 497, 498, 499
with-full-optimization, 135

GBBopen 1.5 Reference
Index

with-generate-accessors-format, 136-137

with-gensyms, 138

with-lock-held, 240-243, 262, 263-264, 267

with-mirroring-disabled, 561

with-mirroring-enabled, 562

with-module-redefinitions, 59

with-once-only-bindings, 82, 139

with-open-connection, 314

with-queued-streaming, 563-564

with-reading-saved/sent-objects-block, 516-517

with-saving/sending-block, 503, 504, 518

with-system-name, 18-19

with-timeout, 265-266

within (ordered-dimension pattern operator), 473,
476,484,494, 554

within$ (ordered-dimension single-float pattern
operator), 473, 477, 484, 494, 554

within$$ (ordered-dimension double-float pattern
operator), 473, 477, 484, 494, 554

within$ss (ordered-dimension long-float pattern
operator), 473, 477, 484, 494, 554

within$& (ordered-dimension short-float pattern
operator), 473, 477, 484, 494, 554

within% (ordered-dimension pseudo-probability
pattern operator), 473, 477, 484, 494, 554

withins (ordered-dimension fixnum pattern
operator), 473, 476, 484, 494, 554

without-find-stats, 499

without-lock-held, 267

write-streamer-queue, 565

writer-method-class, 141

writing

a journal to a file, 569

xor, 140
yielding to other threads, 260

zerop$, 146
zerop$$, 147
zerop$$$, 148
zerop$&, 145
zerop%, 149
zerop&, 144

659

	Acknowledgments
	Introduction
	Starting Up
	Top-level REPL commands
	Compiling all GBBopen modules
	Personal gbbopen-init.lisp file
	Personal gbbopen-commands.lisp file
	Personal gbbopen-modules directory
	Installation-wide shared-gbbopen-modules directory
	GBBopen Hyperdoc
	Starting-up entities
	ignored-gbbopen-modules-directory-subdirectories
	gbbopen-modules-directory-verbose
	preferred-browser
	sym-file-verbose
	define-repl-command
	funcall-in-package
	startup-module
	with-system-name

	Module Manager Facility
	Key concepts
	Stand-alone usage
	Module Manager entities
	automatically-create-missing-directories
	autorun-modules
	patches-only
	compile-module
	continue-patch
	define-module
	define-relative-directory
	define-root-directory
	describe-module
	describe-patches
	finish-patch
	get-directory
	get-patch-description
	get-root-directory
	load-module
	load-module-file
	module-directories
	module-loaded-p
	patch
	patch-loaded-p
	show-defined-directories
	start-patch
	with-module-redefinitions

	GBBopen Tools
	GBBopen Tools entities
	:disable-compiler-macros
	:full-safety
	disable-with-error-handling
	allow-redefinition
	assq
	bounded-value
	case-using
	case-using-failure
	ccase-using
	compiler-macroexpand
	compiler-macroexpand-1
	counted-delete
	decf-after
	decf/delete-acons
	delq
	delq-one
	defcm
	define-class
	do-until
	do-while
	dosequence
	dosublists
	dotted-length
	ecase-using
	ensure-finalized-class
	ensure-list
	incf-after
	list-length-1-p
	list-length-2-p
	list-length>
	list-length>1
	list-length>2
	make-hash-values-vector
	make-keyword
	memq
	multiple-value-setf
	nsorted-insert
	object-address
	print-instance-slot-value
	print-instance-slots
	printv
	push-acons
	pushnew-acons
	pushnew-elements
	pushnew/incf-acons
	remove-properties
	remove-property
	set-equal
	sets-overlap-p
	shuffle-list
	shrink-vector
	sole-element
	splitting-butlast
	sorted-maphash
	sortf
	stable-sortf
	standard-gbbopen-instance
	trimmed-substring
	undefmethod
	unbound-value-indicator
	until
	while
	with-error-handling
	with-full-optimization
	with-generate-accessors-format
	with-gensyms
	with-once-only-bindings
	xor

	CLOS and MOP
	Declared Numerics
	Fixnum operators
	Short-float operators
	Single-float operators
	Double-float operators
	Long-float operators

	Pseudo Probabilities
	*%
	/%
	exp%
	ln%
	pprob2prob
	prob2pprob

	Date and Time
	month-precedes-date
	time-first
	year-first
	brief-date
	brief-date-and-time
	brief-duration
	brief-run-time-duration
	encode-date-and-time
	encode-time-of-day
	full-date-and-time
	http-date-and-time
	internet-text-date-and-time
	iso8601-date-and-time
	message-log-date-and-time
	parse-date
	parse-date-and-time
	parse-duration
	parse-time
	pretty-duration
	pretty-run-time-duration
	very-brief-date

	Offset Universal Time
	ot-base
	check-ot-base
	ot2ut
	printvot
	set-ot-base
	ut2ot

	Transitioning Sets and Tables
	add-to-eset
	delete-from-eset
	delete-et
	get-et
	in-eset
	make-eset
	make-et

	Search Trees
	llrb-tree-count
	llrb-tree-delete
	llrb-tree-p
	llrb-tree-test
	llrb-tree-value
	make-llrb-tree
	map-llrb-tree

	Additional GBBopen Tools
	Portable Threads
	all-threads
	as-atomic-operation
	atomic-decf
	atomic-decf&
	atomic-delete
	atomic-flush
	atomic-incf
	atomic-incf&
	atomic-pop
	atomic-push
	atomic-pushnew
	awaken-thread
	condition-variable
	condition-variable-broadcast
	condition-variable-signal
	condition-variable-wait
	condition-variable-wait-with-timeout
	current-thread
	hibernate-thread
	kill-thread
	make-condition-variable
	make-lock
	make-recursive-lock
	nearly-forever-seconds
	run-in-thread
	sleep-nearly-forever
	spawn-form
	spawn-thread
	symbol-value-in-thread
	thread-alive-p
	thread-name
	thread-whostate
	thread-yield
	threadp
	thread-holds-lock-p
	with-lock-held
	with-timeout
	without-lock-held

	Scheduled and Periodic Functions
	periodic-function-verbose
	schedule-function-verbose
	all-scheduled-functions
	kill-periodic-function
	make-scheduled-function
	pause-scheduled-function-scheduler
	restart-scheduled-function-scheduler
	resume-scheduled-function-scheduler
	schedule-function
	schedule-function-relative
	scheduled-function-context
	scheduled-function-invocation-time
	scheduled-function-marker
	scheduled-function-marker-test
	scheduled-function-name
	scheduled-function-name-test
	scheduled-function-repeat-interval
	scheduled-function-scheduler-paused-p
	scheduled-function-scheduler-running-p
	spawn-periodic-function
	unschedule-function

	Polling Functions
	add-polling-function
	describe-all-polling-functions
	remove-polling-function
	remove-all-polling-functions
	run-polling-functions

	Portable Sockets
	accept-connection
	close-passive-socket
	local-hostname-and-port
	make-passive-socket
	open-connection
	remote-hostname-and-port
	shutdown-socket-stream
	start-connection-server
	with-open-connection

	Double Metaphone
	double-metaphone

	OS Interface
	browse-hyperdoc
	close-external-program-stream
	kill-external-program
	run-external-program
	svn-version

	GBBopen Core
	skip-deleted-unit-instance-class-change
	change-class
	check-for-deleted-instance
	check-instance-locators
	class-instances-count
	define-unit-class
	delete-instance
	deleted-instance-class
	deleted-unit-instance
	describe-instance
	describe-instance-slot-value
	describe-unit-class
	dimensions-of
	direct-nonlink-slot-definition
	effective-nonlink-slot-definition
	gbbopen-direct-slot-definition
	gbbopen-effective-slot-definition
	gbbopen-implementation-version
	incomplete-instance-p
	initial-class-instance-number
	instance-deleted-p
	instance-dimension-value
	instance-dimension-values
	instance-name-of
	make-duplicate-instance
	make-duplicate-instance-changing-class
	make-instance
	next-class-instance-number
	reset-unit-class
	space-instances-of
	standard-unit-class
	standard-unit-instance
	unduplicated-slot-names
	with-changing-dimension-values
	Links
	check-all-instance-links
	check-link-definitions
	direct-link-definition
	effective-link-definition
	link-instance-of
	linkf
	link-setf
	link-slot-p
	standard-link-pointer
	unlinkf
	unlinkf-all

	Events
	add-event-function
	define-event-class
	describe-event-printing
	disable-event-printing
	enable-event-printing
	evfn-printv
	remove-all-event-functions
	remove-event-function
	resume-event-printing
	signal-event
	standard-event-class
	standard-event-instance
	suspend-event-printing
	with-events-disabled
	with-events-enabled

	Intervals
	coerce-contracted-interval-rationals-to-floats
	copy-interval
	expand-interval
	expand-point
	infinite-interval
	interval-end
	interval-start
	interval-values
	make-interval
	nexpand-interval
	nshift-interval
	shift-interval

	Blackboard Repository
	add-instance-to-space-instance
	allowed-unit-classes-of
	change-space-instance
	children-of
	clear-space-instances
	confirm-if-blackboard-repository-not-empty-p
	define-space-class
	delete-blackboard-repository
	delete-all-space-instances
	delete-space-instance
	describe-blackboard-repository
	describe-space-instance
	describe-space-instance-storage
	do-space-instances
	empty-blackboard-repository-p
	find-space-instance-by-path
	find-space-instances
	make-space-instance
	map-space-instances
	parent-of
	remove-instance-from-space-instance
	reset-gbbopen
	standard-space-class
	standard-space-instance
	with-blackboard-repository-locked

	Instance Retrieval
	find-verbose
	use-marking
	warn-about-unusual-requests
	do-instances-of-class
	do-instances-on-space-instances
	do-sorted-instances-of-class
	filter-instances
	find-all-instances-by-name
	find-instance-by-name
	find-instances
	find-instances-of-class
	make-instances-of-class-vector
	map-instances-of-class
	map-instances-on-space-instances
	map-sorted-instances-of-class
	report-find-stats
	with-find-stats
	without-find-stats

	Saving and Sending
	block-saved/sent-time
	block-saved/sent-value
	print-object-for-sending
	save/send-references-only
	initialize-saved/sent-instance
	load-blackboard-repository
	omitted-slots-for-saving/sending
	print-object-for-saving/sending
	print-slot-for-saving/sending
	save-blackboard-repository
	with-reading-saved/sent-objects-block
	with-saving/sending-block

	Queue Management
	clear-queue
	do-queue
	first-queue-element
	insert-on-queue
	last-queue-element
	make-queue
	map-queue
	next-queue-element
	nth-queue-element
	on-queue-p
	ordered-queue
	previous-queue-element
	queue
	queue-element
	queue-length
	remove-from-queue
	show-queue

	GBBopen Extensions
	Streaming
	add-mirroring
	add-to-broadcast-streamer
	clear-streamer-queue
	close-streamer
	make-broadcast-streamer
	open-streamer-p
	read-queued-streaming-block
	remove-from-broadcast-streamer
	stream-add-instance-to-space-instance
	stream-delete-instance
	stream-instance
	stream-instances
	stream-instances-of-class
	stream-of
	stream-instances-on-space-instances
	stream-link
	stream-nonlink-slot-update
	stream-remove-instance-from-space-instance
	stream-unlink
	remove-mirroring
	with-mirroring-disabled
	with-mirroring-enabled
	with-queued-streaming
	write-streamer-queue

	Journaling
	load-journal
	make-journal-streamer

	Network Streaming
	default-network-stream-server-port
	define-streamer-node
	find-streamer-node
	kill-network-stream-server
	network-stream-server-running-p
	open-network-streamer
	start-network-stream-server

	Agenda Control Shell
	abort-ks-execution
	activation-cycle-of
	collect-trigger-instances
	control-shell-running-p
	current-control-shell
	define-ks
	define-ks-class
	define-ksa-class
	describe-ks
	ensure-ks
	executed-ksas-of
	execution-cycle-of
	exit-control-shell
	find-ks-by-name
	ks
	ks-enabled-p
	ks-of
	ksa
	ksa-queue
	obviated-ksas-of
	obviation-cycle-of
	ordered-ksa-queue
	pending-ksas-of
	rating
	rating-of
	restart-control-shell
	sole-trigger-event-of
	sole-trigger-instance-of
	standard-ksa-class
	start-control-shell
	trigger-events-of
	undefine-ks

	Glossary
	Index

